Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Seasonal variation of the monthly efficiencies of thin film PV modules
Date
2017-12-04
Author
Özden, Talat
Turan, Raşit
Akınoğlu, Bülent Gültekin
Metadata
Show full item record
Item Usage Stats
235
views
0
downloads
Cite This
Outdoor testing of solar photovoltaic (PV) modules must be carried out at different climates as PV power plants nowadays are installed and continues to be installed in many countries. Present study is outdoor testing results and analyses of 5 thin film modules in Ankara, Turkey. The analyses are carried out using monthly efficiencies of the modules that are derived using the energy yield and input. The average efficiencies of the CIS, CIGS and μc-Si/a-Si thin film modules are. We present the monthly and average efficiencies and discuss their variations with the parameter: input, ambient temperature and relative humidity. We also carried out seasonal analyses using Pearson's correlation coefficient and find out that the efficiencies are differently dependent on the above mentioned parameters. This arose a new open question on differentiation of the strength of the effect of each parameter on the monthly efficiencies.
Subject Keywords
Solar energy
,
Photovoltaics
,
Thin film nodules
URI
https://hdl.handle.net/11511/87358
DOI
https://doi.org/10.1109/IRSEC.2017.8477303
Conference Name
2017 International Renewable and Sustainable Energy Conference (IRSEC)
Collections
Department of Physics, Conference / Seminar
Suggestions
OpenMETU
Core
Technical potential of rooftop solar photovoltaic for Ankara
Kutlu, Elif Ceren; Durusoy, Beyza; Ozden, Talat; Akınoğlu, Bülent Gültekin (2022-02-01)
Turkey, which has immense solar potential, has recently shifted towards solar energy and new renewable energy deployment regulations, including implementation and commercializing rooftop PV technologies. Thus, these require a detailed assessment to determine the power source's capability and convince the policymakers. To the authors' best knowledge, there is no available data or a city-based study for the rooftop PV potential in Turkey. Here, we present the first city-based rooftop PV potential study in Ank...
Optimizing the orientation of solar photovoltaic systems considering the effects of irradiation and cell temperature models with dust accumulation
Al-Ghussain, Loiy; Taylan, Onur; Abujubbeh, Mohammad; Hassan, Muhammed A. (2023-01-01)
To cope with the growing installation capacities of solar photovoltaic (PV) systems in desert areas, it is necessary to revisit the energy production models and the optimal angles of PV panels given the significant impacts of ambient temperature, wind speed, dust accumulation, and cleaning frequency. In this study, these four factors are examined for four PV technologies (polycrystalline, microcrystalline, monocrystalline, and thin-film) at three cities in Jordan, Egypt, and Tunisia using precise ground-lev...
Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrays
Kartopu, G.; Turkay, D.; Özcan, Can; Hadıbrata, W.; Aurang, P.; Yerci, Selçuk; Ünalan, Hüsnü Emrah; Barrioz, V.; Qu, Y.; Bowen, L.; Gurlek, A. K.; Maiello, P.; Turan, Raşit; Irvine, S. J. C. (2018-03-01)
One-dimensional nanostructures, such as nanorod (NR) arrays, are expected to improve the photovoltaic (PV) response of solar cells with an ultrathin absorber due to an increased areal (junction) density and light trapping. We report on the deposition of CdS and CdTe:As semiconductor thin films on ZnO NR arrays by means of metalorganic chemical vapour deposition (MOCVD). The change in optical properties of the ZnO NRs upon the growth of CdS shell was monitored and compared to the simulated data, which confir...
Experimental and numerical analysis of a salt gradient solar pond
Güven, Pelin; Taylan, Onur; Torkmahalleh, Mehdi Amouei; Sustainable Environment and Energy Systems (2018-9)
A salt gradient solar pond (SGSP) is a low-cost solar energy system, collects incoming solar radiation and then stores it in the form of thermal energy. SGSP has been developed recently and is considered as a large-scale energy collector for long-term use with no or little maintenance. It also has no environmental hazard. Most importantly, solar energy meets the energy demand in a clean and sustainable way; thus, SGSP can be though as a sustainable alternative for conventional energy systems. SGSP has three...
Surface texturing study with aluminum induced texturing method on soda-lime glass substrates for thin film solar cells
Ünal, Mustafa; Turan, Raşit; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2017)
It is essential to employ an effective light trapping scheme to decrease the cost of produced solar electricity further in thin film solar cell technologies. There are several methods that can be used for light trapping and aluminum induced texturing (AIT) is one of them. The aim of this thesis study is to obtain highly effective light trapping interface via texturing of glass surface by AIT process. The resultant texture is affected by several parameters such as Al thickness, annealing time and temperature...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Özden, R. Turan, and B. G. Akınoğlu, “Seasonal variation of the monthly efficiencies of thin film PV modules,” Tangier, Morocco, 2017, p. 111, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/87358.