Optimizing the orientation of solar photovoltaic systems considering the effects of irradiation and cell temperature models with dust accumulation

2023-01-01
Al-Ghussain, Loiy
Taylan, Onur
Abujubbeh, Mohammad
Hassan, Muhammed A.
To cope with the growing installation capacities of solar photovoltaic (PV) systems in desert areas, it is necessary to revisit the energy production models and the optimal angles of PV panels given the significant impacts of ambient temperature, wind speed, dust accumulation, and cleaning frequency. In this study, these four factors are examined for four PV technologies (polycrystalline, microcrystalline, monocrystalline, and thin-film) at three cities in Jordan, Egypt, and Tunisia using precise ground-level meteo-solar measurements. Different models are compared to estimate the diffuse irradiance, as well as account for the effects of operating temperature, wind speed, and dust accumulation on energy production and optimal tilt and azimuth angles of the panels. The results reveal 1.5 % higher energy production estimates using the isotropic model, compared to the anisotropic model in the summer months. Considering the cooling effect of wind speed decreases the operating cell temperature drops by up to 7.05 % for thin film panels. The annually produced energy decreases by 24 % when the panels are cleaned bi-monthly. When the dust accumulation rate doubles, the energy production decreases by ∼10 % for all studied cases. Also, the variations in optimal tilt and azimuth angles with dust accumulation rate are within ∼3.0°.

Suggestions

Numerical investigation of circulating fluidized bed riser hydrodynamics for concentrating solar thermal receiver applications
Bilyaz, Serhat; Tarı, İlker; Department of Mechanical Engineering (2015)
Various heat transfer fluids and thermal storage materials are considered for concentrating solar power systems to improve the storage capability of the system which compensates the fluctuating behavior of the solar resources. Solid particles can be a good alternative since they have high sensible heat capacity. In addition, they are cheap, environmentally benign and chemically and mechanically stable at high temperatures. In this thesis, hydrodynamics of circulating fluidized bed solar receiver was numeric...
Evaluation of hybridsolar-wind-hydrogenenergy system based on methanol electrolyzer
Budak, Yagmur; DEVRİM, YILSER (Wiley, 2020-10-01)
In this study, it is aimed to meet the annual electricity and heating needs of a house without interruption with the photovoltaic panel, wind turbine, methanol electrolyzer, and high temperature proton exchange membrane fuel cell system. The system results show that the use of the 2 WT with 18 PV was enough to provide the need of the methanol electrolyzer, which provides requirements of the high temperature proton exchange membrane fuel cell. The produced heat by the fuel cell was used to meet the heat requ...
Dual-band perfect metamaterial absorber for solar cell applications
Rufangura, Patrick; Sabah, Cumali (2015-10-01)
The efficiency of solar photovoltaic (PV) cells has been one of the major problems impeding its global adoption as one of the sustainable substitutes to fossil fuel based technologies. Metamaterial (MTM) based solar cells offer an opportunity towards increasing the system efficiency by enhancing the total absorbed solar radiation incident on this device. In this study, a nanostructure-based MTM perfect absorber has been designed and simulated. By adjusting geometrical parameters and MTM structure properties...
Performance tracking & characterization of commercial solar panels
Oğulgönen, Celal Güvenç; Kıncal, Serkan; Department of Chemical Engineering (2014)
This study aims to characterize the performance of different types of commercial solar panels in terms of the meteorological parameters such as irradiance, temperature, pressure, relative humidity with the technologies of mono and polycrystalline along with thin film, by evaluating the performance data collected with a Daystar MT-5 I-V curve tracer. The approach to this characterization is a comprehensive data collection scheme where solar panel performance is monitored side-by-side with an exhaustive list ...
Simulation Studies of Hole Textured and Planar Microcrystalline Silicon Solar Cell at Different Zenith Angle
Zainab, Sana; Hussain, Shahzad; Altinoluk, Serra H.; Turan, Raşit (2017-09-23)
Efficiency of solar cell greatly depends on its interaction with input solar irradiance. For highly efficient solar cell, absorption of input light should be maximum at all angles. Different surface texturing techniques like pyramid texturing, cone texturing, pillar texturing have been used to increase absorption of light in solar cell. Micro-hole Surface texturing is getting popular in absorption of solar radiation at higher zenith angle. In this paper, effect of varying zenith angle on hole textured solar...
Citation Formats
L. Al-Ghussain, O. Taylan, M. Abujubbeh, and M. A. Hassan, “Optimizing the orientation of solar photovoltaic systems considering the effects of irradiation and cell temperature models with dust accumulation,” Solar Energy, vol. 249, pp. 67–80, 2023, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/101647.