A Micro Electrochemical Sensor for the Detection of Methicillin Resistance in Staphylococcus Aureus

2012-05-15
Külah, Haluk
Özgen, Canan

Suggestions

A Fully Microfabricated Electrochemical Sensor and its Implementation for Detection of Methicillin Resistance in Staphylococcus aureus
Koydemir, Hatice Ceylan; Külah, Haluk; ALP, ALPASLAN; ÜNER, AYŞEGÜL; HASÇELİK, AYŞE GÜLŞEN; Özgen, Canan (2014-06-01)
On-chip detection of biological analytes can enable diagnosis at the point of care. Combining the advantages of microelectromechanical system (MEMS) technology and molecular methods, we present the design of an integrated microfluidic platform, a microelectrochemical sensor (mu ECS), and its implementation for the detection of methicillin resistance in Staphylococcus aureus. This platform is capable of electrochemically sensing the target analyte in a microfluidic reactor without the usage of bulky electrod...
A DEP-Based Lab-On-A-Chip System For The Detection Of Multidrug Resistance In K562 Leukemia Cells
Yalçın, Yağmur Demircan; Özkayar, Gürkan; Özgür, Ebru; Gündüz, Ufuk; Külah, Haluk (2016-06-09)
This study presents a DEP-based lab-on-a-chip (LOC) system for label-free detection of multidrug resistant (MDR) K562 leukemia cells in a cell mixture, consisting of red blood cells (RBCs) and MDR-K562 cells, for the first time in the literature. The system consists of 2 consecutive DEP units, one for the depletion of RBCs and the other for capturing of MDR-K562 cells. RBCs are depleted by 60% in the first unit. In the second unit, MDR-K562 cell detection is performed with 100% selectivity at a flow rate of...
A DNA-free colorimetric probe based on citrate-capped silver nanoparticles for sensitive and rapid detection of coralyne
Usta, Hatice Muge; Forough, Mehrdad; Persil Çetinkol, Özgül (Elsevier BV, 2019-11-01)
This paper presents a simple, sensitive and reliable strategy for the colorimetric determination of coralyne (COR) using citrate-capped silver nanoparticles (Cit-AgNPs). In the presence of NaC1, COR induces the aggregation of Cit-AgNPs, resulting in a change of color from shinny yellow to pink. Significant variables affecting the proposed method (salt concentration, interaction time, interaction temperature and pH) were evaluated and optimized to achieve the maximum sensing performance. Optimal conditions w...
A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness
Moradi, Mehran; Tajik, Hossein; Almasi, Hadi; Forough, Mehrdad; Ezati, Parya (Elsevier BV, 2019-10-15)
A novel intelligent pH-sensing indicator based on bacterial nanocellulose (BC) and black carrot anthocyanins (CA) was developed and characterized to monitor the freshness/spoilage of rainbow trout and common carp fillet during the storage at 4 degrees C. The indicator displayed wide color differences from red to gray over the 2-11 pH range, which was clearly discerned by the naked eye. The fabricated pH-sensing indicator showed distinguishable color changes during fresh (deep carmine color), best to eat (ch...
A Novel Acetylcholinesterase Biosensor: Core-Shell Magnetic Nanoparticles Incorporating a Conjugated Polymer for the Detection of Organophosphorus Pesticides
Cancar, Hurija Dzudzevic; SÖYLEMEZ, Saniye; AKPINAR, Yeliz; KESİK, Melis; Goker, SEZA; Günbaş, Emrullah Görkem; Volkan, Mürvet; Toppare, Levent Kamil (American Chemical Society (ACS), 2016-03-30)
To construct a sensing interface, in the present work, a conjugated polymer and core shell magnetic nano particle containing biosensor was constructed for the pesticide analysis. The monomer 4,7-di(furan-2-yl)benzo [c] [1,2,5]-thiadiazole (FBThF) and core shell magnetic nanoparticles were designed and synthesized for fabrication of the biosensing device. The magnetic nanoparticles were first treated with silica and then modified using carboxyl groups, which enabled binding of the biomolecules covalently. Fo...
Citation Formats
H. Külah and C. Özgen, “A Micro Electrochemical Sensor for the Detection of Methicillin Resistance in Staphylococcus Aureus,” 2012, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/87432.