Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A DEP-Based Lab-On-A-Chip System For The Detection Of Multidrug Resistance In K562 Leukemia Cells
Download
index.pdf
Date
2016-06-09
Author
Yalçın, Yağmur Demircan
Özkayar, Gürkan
Özgür, Ebru
Gündüz, Ufuk
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
178
views
126
downloads
Cite This
This study presents a DEP-based lab-on-a-chip (LOC) system for label-free detection of multidrug resistant (MDR) K562 leukemia cells in a cell mixture, consisting of red blood cells (RBCs) and MDR-K562 cells, for the first time in the literature. The system consists of 2 consecutive DEP units, one for the depletion of RBCs and the other for capturing of MDR-K562 cells. RBCs are depleted by 60% in the first unit. In the second unit, MDR-K562 cell detection is performed with 100% selectivity at a flow rate of 10 μl/min and at 20 Vpp in a cell mixture, containing less than 25% MDR-K562 cells.
URI
https://hdl.handle.net/11511/32390
DOI
https://doi.org/10.31438/trf.hh2016.86
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
A microfluidic device enabling drug resistance analysis of leukemia cells via coupled dielectrophoretic detection and impedimetric counting
Demircan Yalçın, Yağmur; Töral, Taylan Berkin; Sukas, Sertan; Yıldırım, Ender; Zorlu, Özge; Gündüz, Ufuk; Külah, Haluk (2021-12-01)
We report the development of a lab-on-a-chip system, that facilitates coupled dielectrophoretic detection (DEP-D) and impedimetric counting (IM-C), for investigating drug resistance in K562 and CCRF-CEM leukemia cells without (immuno) labeling. Two IM-C units were placed upstream and downstream of the DEP-D unit for enumeration, respectively, before and after the cells were treated in DEP-D unit, where the difference in cell count gave the total number of trapped cells based on their DEP characteristics. Co...
The synthesis and characterization of thioglycolic acid and thiourea capped fluorescent zinc sulfide nanoparticles
Mertoğlu, Cemre; Volkan, Mürvet; Department of Chemistry (2021-6)
The changes in mitochondrial bioenergetics due to DNA mutations lead to an increase in the significance of mitochondria imaging of cancer cells. Since fluorescent imaging provides high resolution, sensitivity, and selectivity to many targets in living cells, fluorescent nanoparticles can be used as imaging probes. Zinc is one of the essential elements in cells used for cell growth, division, and apoptosis. Therefore, zinc sulfide semiconductor nanoparticles have been attracted attention due to its character...
A two-compartment bone tumor model to investigate interactions between healthy and tumor cells
Komez, Aylin; Buyuksungur, Arda; Antmen Altunsoy, Ezgi; Swieszkowski, Wojciech; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2020-01-01)
We produced a novel three-dimensional (3D) bone tumor model (BTM) to study the interactions between healthy and tumor cells in a tumor microenvironment, the migration tendency of the tumor cells, and the efficacy of an anticancer drug, Doxorubicin, on the cancer cells. The model consisted of two compartments: (a) a healthy bone tissue mimic, made of poly(lactic acid-co-glycolic acid) (PLGA)/beta-tricalcium phosphate (beta-TCP) sponge seeded with human fetal osteoblastic cells (hFOB) and human umbilical vein...
In vitro bone tissue engineering on patterned biodegradable polyester blends
Kenar, Halime; Hasırcı, Vasıf Nejat; Toner, Mehmet; Department of Biotechnology (2003)
This study aimed at guiding osteoblast cells on biodegradable polymer carriers with well-defined surface microtopography and chemistry, and investigating the effect of cell alignment on osteoblast phenotype expression. A blend of two different polyesters, one being natural in origin (PHBV) and the other synthetic (P(L/DL)LA), was used to form a film with parallel macro- (250 um wide) or microgrooves (27 jam wide) on its surface, by solvent casting on patterned templates. The micropatterned Si template was p...
Highly-sensitive and fast detection of human telomeric G-Quadruplex DNA based on a hemin-conjugated fluorescent metal-organic framework platform
Javan Kouzegaran, Vahid; Farhadi, Khalil; Forough, Mehrdad; Bahram, Morteza; Persil Çetinkol, Özgül (Elsevier BV, 2021-04-15)
© 2021 Elsevier B.V.The formation of G-quadruplex (G4) structures in Human telomeric DNA (H-Telo) has been demonstrated to inhibit the activity of telomerase enzyme that is associated with the proliferation of many cancer cells. Accordingly, G-quadruplex structures have become one of the well-established targets in anticancer therapeutic strategies. And, the development of simple and selective detection platforms for G4 structures has become a significant focus of research in recent years. In this study, a ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. D. Yalçın, G. Özkayar, E. Özgür, U. Gündüz, and H. Külah, “A DEP-Based Lab-On-A-Chip System For The Detection Of Multidrug Resistance In K562 Leukemia Cells,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32390.