Laboratory for continuous production of natural gas hydrates

2000-03-05
Gudmundsson, Jon Steinar
Parlaktuna, Mahmut
Levik, Odd Ivar
Andersson, Vibeke
Natural gas hydrate technology is an attractive alternative for storing and transporting natural gas. A high-pressure laboratory has been built to provide experimental data for use in the design and development of hydrate-based processes for the oil and gas industry. In the laboratory, hydrate is produced from liquid water-and water-in-oil emulsions-and injected natural gas mixtures. The hydrate reactor and circulation loop can operate at pressures up to 120 bar and constant temperatures in the range 0-20 degrees C. The hydrate slurry produced can be circulated at up to 100 liter/minute through 4-m long pipes equipped with differential pressure transducers and flow meters to determine their rheological characteristics under laminar and turbulent flow conditions. The laboratory can also be used for various flow assurance studies.
Gas hydrates :ydrates challenges for the future

Suggestions

A numerical simulation study on mixing of inert cushion gas with working gas in an underground gas storage reservoir
Kilincer, N; Gumrah, F (2000-12-01)
The cushion gas, providing the pressure energy necessary for withdrawal of working gas, makes up the largest part of the investment in underground gas storage projects. The suggested method of reducing this cost is the replacement of some part of the cushion gas with less expensive inert gas, such as nitrogen. In the replacement, there might be some problems due to mixing between natural gas and inert gas. Turkey has sharply increasing demand for natural gas. The constant imported gas and varying demand thr...
An electronic control unit design for a miniature jet engine
Polat, Cuma; Dölen, Melik; Department of Mechanical Engineering (2010)
Gas turbines are widely used as power sources in many industrial and transportation applications. This kind of engine is the most preferred prime movers in aircrafts, power plants and some marine vehicles. They have different configurations according to their mechanical constructions such as turbo-prop, turbo-shaft, turbojet, etc. These engines have different efficiencies and specifications and some advantages and disadvantages compared to Otto-Cycle engines. In this thesis, a small turbojet engine is inves...
Simulation of depleted gas reservoir for underground gas storage
Öztürk, Bülent; Bağcı, Suat; Department of Petroleum and Natural Gas Engineering (2004)
For a natural gas importing country, أtake or payؤ approach creates problems since the demand for natural gas varies during the year and the excess amount of natural gas should be stored. In this study, an underground gas storage project is evaluated in a depleted gas Field M. After gathering all necessary reservoir, fluid, production and pressure data, the data were adapted to computer language, which was used in a commercial simulator software (IMEX) that is the CMG̕s (Computer Modelling Group) new genera...
Development of a superconducting claw-pole linear test-rig
Radyjowski, Patryk; Keysan, Ozan; Burchell, Joseph; Mueller, Markus (IOP Publishing, 2016-04-01)
Superconducting generators can help to reduce the cost of energy for large offshore wind turbines, where the size and mass of the generator have a direct effect on the installation cost. However, existing superconducting generators are not as reliable as the alternative technologies. In this paper, a linear test prototype for a novel superconducting claw-pole topology, which has a stationary superconducting coil that eliminates the cryocooler coupler will be presented. The issues related to mechanical, elec...
The effect of experimental conditions on natural gas hydrate formation
Longinos, Sotirios; Parlaktuna, Mahmut; Department of Petroleum and Natural Gas Engineering (2020)
Natural gas hydrates (NGH) are proposed as gas storage and transportation media owing to their high gas content and long-term stability of hydrate crystal structure at common refrigeration temperatures and atmospheric pressure. Technically feasible, cost efficient hydrate production is one of the crucial items of the whole chain of storage and transportation of gas by means of NGH technology. This study investigated the effects of types of impellers and baffles, and the use of promoters on natural gas hydra...
Citation Formats
J. S. Gudmundsson, M. Parlaktuna, O. I. Levik, and V. Andersson, “Laboratory for continuous production of natural gas hydrates,” 2000, vol. 912, p. 851, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/87956.