Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A short note on resolving singularity problems in covariance matrices
Date
2012-01-01
Author
Purutçuoğlu Gazi, Vilda
Wit, Ernst
Metadata
Show full item record
Item Usage Stats
176
views
0
downloads
Cite This
In problems where a distribution is concentrated in a lower-dimensional subspace, the covariance matrix faces a singularity problem. In downstream statistical analyzes this can cause a problem as the inverse of the covariance matrix is often required in the likelihood. There are several methods to overcome this challenge. The most well-known ones are the eigenvalue, singular value, and Cholesky decompositions. In this short note, we develop a new method to deal with the singularity problem while preserving the covariance structure of the original matrix. We compare our alternative with other methods. In a simulation study, we generate various covariance matrices that have different dimensions and dependency structures, and compare the CPU times of each approach.
URI
https://hdl.handle.net/11511/88410
Journal
International Journal of Statistics and Probability
DOI
https://doi.org/10.5539/ijsp.v1n2p113
Collections
Department of Statistics, Article
Suggestions
OpenMETU
Core
A Brief Note on the Noncoprime Regular Module Problem
Güloğlu, Ş.; Ercan, Gülin (2021-01-01)
We consider a special configuration in which a finite group A acts by automorphisms on a finite group G and the semidirect product GA acts on the vector space V by linear transformations and discuss the existence of a regular A-module in VA.
A note on the importance of mass conservation in long-time stability of Navier-Stokes simulations using finite elements
Belenli, Mine Akbas; Rebholz, Leo G.; Tone, Florentina (2015-07-01)
We prove a long-time stability result for the finite element in space, linear extrapolated Crank-Nicolson in time discretization of the Navier-Stokes equations (NSE). From this result and a numerical experiment, we show the importance of discrete mass conservation in long-time simulations of the NSE. That is, we show that using elements that strongly enforce mass conservation can provide significantly more accurate solutions over long times, compared to those that enforce it weakly.
Exact Pseudospin Symmetric Solution of the Dirac Equation for Pseudoharmonic Potential in the Presence of Tensor Potential
AYDOĞDU, OKTAY; Sever, Ramazan (Springer Science and Business Media LLC, 2010-04-01)
Under the pseudospin symmetry, we obtain exact solution of the Dirac equation for the pseudoharmonic potential in the presence of the tensor potential with arbitrary spin-orbit coupling quantum number kappa. The energy eigenvalue equation of the Dirac particles is found and the corresponding radial wave functions are presented in terms of confluent hypergeometric functions. We investigate the tensor potential dependence of the energy of the each state in the pseudospin doublet. It is shown that degeneracy b...
Exact solutions of the supersmmetric quantum mechanics
Faridfathi, Gholamreza; Sever, Ramazan; Department of Physics (2005)
The supersymmetric solutions of PT-/non-PT symmetric and Hermitian/non-Hermitian forms of quantum systems are obtained by solving the SchrÄodinger equation with the deformed Morse, Hulthœen, PÄoschl-Teller, Hyperbolic Kratzer-like, Screened Coulomb, and Exponential-Cosine Screened Coulomb (ECSC) potentials. The Hamiltonian hi- erarchy method is used to get the real energy eigenvalues and corresponding wave functions.
Concrete description of CD0(K)-spaces as C(X)-spaces and its applications
Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We prove that for a compact Hausdorff space K without isolated points, CD0(K) and C(K x {0, 1}) are isometrically Riesz isomorphic spaces under a certain topology on K x {0, 1}. Moreover, K is a closed subspace of K x {0, 1}. This provides concrete examples of compact Hausdorff spaces X such that the Dedekind completion of C(X) is B(S) (= the set of all bounded real-valued functions on S) since the Dedekind completion of CD0(K) is B(K) (CD0(K, E) and CDw (K, E) spaces as Banach lattices).
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
V. Purutçuoğlu Gazi and E. Wit, “A short note on resolving singularity problems in covariance matrices,”
International Journal of Statistics and Probability
, pp. 113–118, 2012, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/88410.