A short note on resolving singularity problems in covariance matrices

2012-01-01
In problems where a distribution is concentrated in a lower-dimensional subspace, the covariance matrix faces a singularity problem. In downstream statistical analyzes this can cause a problem as the inverse of the covariance matrix is often required in the likelihood. There are several methods to overcome this challenge. The most well-known ones are the eigenvalue, singular value, and Cholesky decompositions. In this short note, we develop a new method to deal with the singularity problem while preserving the covariance structure of the original matrix. We compare our alternative with other methods. In a simulation study, we generate various covariance matrices that have different dimensions and dependency structures, and compare the CPU times of each approach.
International Journal of Statistics and Probability

Suggestions

A Brief Note on the Noncoprime Regular Module Problem
Güloğlu, Ş.; Ercan, Gülin (2021-01-01)
We consider a special configuration in which a finite group A acts by automorphisms on a finite group G and the semidirect product GA acts on the vector space V by linear transformations and discuss the existence of a regular A-module in VA.
A note on the importance of mass conservation in long-time stability of Navier-Stokes simulations using finite elements
Belenli, Mine Akbas; Rebholz, Leo G.; Tone, Florentina (2015-07-01)
We prove a long-time stability result for the finite element in space, linear extrapolated Crank-Nicolson in time discretization of the Navier-Stokes equations (NSE). From this result and a numerical experiment, we show the importance of discrete mass conservation in long-time simulations of the NSE. That is, we show that using elements that strongly enforce mass conservation can provide significantly more accurate solutions over long times, compared to those that enforce it weakly.
Exact Pseudospin Symmetric Solution of the Dirac Equation for Pseudoharmonic Potential in the Presence of Tensor Potential
AYDOĞDU, OKTAY; Sever, Ramazan (Springer Science and Business Media LLC, 2010-04-01)
Under the pseudospin symmetry, we obtain exact solution of the Dirac equation for the pseudoharmonic potential in the presence of the tensor potential with arbitrary spin-orbit coupling quantum number kappa. The energy eigenvalue equation of the Dirac particles is found and the corresponding radial wave functions are presented in terms of confluent hypergeometric functions. We investigate the tensor potential dependence of the energy of the each state in the pseudospin doublet. It is shown that degeneracy b...
Exact solutions of the supersmmetric quantum mechanics
Faridfathi, Gholamreza; Sever, Ramazan; Department of Physics (2005)
The supersymmetric solutions of PT-/non-PT symmetric and Hermitian/non-Hermitian forms of quantum systems are obtained by solving the SchrÄodinger equation with the deformed Morse, Hulthœen, PÄoschl-Teller, Hyperbolic Kratzer-like, Screened Coulomb, and Exponential-Cosine Screened Coulomb (ECSC) potentials. The Hamiltonian hi- erarchy method is used to get the real energy eigenvalues and corresponding wave functions.
Concrete description of CD0(K)-spaces as C(X)-spaces and its applications
Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We prove that for a compact Hausdorff space K without isolated points, CD0(K) and C(K x {0, 1}) are isometrically Riesz isomorphic spaces under a certain topology on K x {0, 1}. Moreover, K is a closed subspace of K x {0, 1}. This provides concrete examples of compact Hausdorff spaces X such that the Dedekind completion of C(X) is B(S) (= the set of all bounded real-valued functions on S) since the Dedekind completion of CD0(K) is B(K) (CD0(K, E) and CDw (K, E) spaces as Banach lattices).
Citation Formats
V. Purutçuoğlu Gazi and E. Wit, “A short note on resolving singularity problems in covariance matrices,” International Journal of Statistics and Probability, pp. 113–118, 2012, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/88410.