Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Self-organized Collective Motion with a Simulated Real Robot Swarm
Date
2019-07-01
Author
Raoufi, Mohsen
Turgut, Ali Emre
Arvin, Farshad
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
168
views
0
downloads
Cite This
Collective motion is one of the most fascinating phenomena observed in nature. In the last decade, it aroused so much attention in physics, control and robotics fields. In particular, many studies have been done in swarm robotics related to collective motion, also called flocking. In most of these studies, robots use orientation and proximity of their neighbors to achieve collective motion. In such an approach, one of the biggest problems is to measure orientation information using on-board sensors. In most of the studies, this information is either simulated or implemented using communication. In this paper, we implemented a fully autonomous coordinated motion without alignment using very simple Mona robots. We used an approach based on Active Elastic Sheet (AES) method. We modified the method and added the capability to enable the swarm to move toward a desired direction and rotate about an arbitrary point. The parameters of the modified method are optimized using TCACS optimization algorithm. We tested our approach in different settings using Matlab and Webots.
Subject Keywords
Swarm robotics
,
Collective motion
,
Coordinated motion
,
Flocking
,
Self-organized
URI
https://hdl.handle.net/11511/88721
DOI
https://doi.org/10.1007/978-3-030-23807-0_22
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Collective gradient perception with a flying robot swarm
Karaguzel, Tugay Alperen; Turgut, Ali Emre; Eiben, A. E.; Ferrante, Eliseo (2022-10-01)
In this paper, we study the problem of collective and emergent sensing with a flying robot swarm in which social interactions among individuals lead to following the gradient of a scalar field in the environment without the need of any gradient sensing capability. We proposed two methods-desired distance modulation and speed modulation-with and without alignment control. In the former, individuals modulate their desired distance to their neighbors and in the latter, they modulate their speed depending on th...
Self-organised Flocking of Robotic Swarm in Cluttered Environments
Liu, Zheyu; Turgut, Ali Emre; Lennox, Barry; Arvin, Farshad (2021-01-01)
Self-organised flocking behaviour, an emergent collective motion, appears in various physical and biological systems. It has been widely utilised to guide the swarm robotic system in different applications. In this paper, we developed a self-organised flocking mechanism for the homogeneous robotic swarm, which can achieve the collective motion with obstacle avoidance in a cluttered environment. The proposed mechanism introduces an obstacle avoidance approach to the Active Elastic Sheet model that was previo...
Laser sheet visualization for flapping motion in hover
Kurtuluş, Dilek Funda; Farcy, Alain; Alemdaroglu, Nafiz (American Institute of Aeronautics and Astronautics Inc.; 2006-12-01)
The aim of the present study is to understand the aerodynamics phenomena and the vortex topology of the highly unsteady flapping motion. Instead of the use of real insect/bird wing geometries and motions which are highly complex and difficult to imitate by an exact modeling, a simplified model is used to understand the unsteady aerodynamics and vortex formation during the different phase of the flapping motion.
Entropy in Born-Infeld gravity
Alıcı, Gökçen Deniz; Kürekci, Şahin; Tekin, Bayram (2017-12-28)
There is a class of higher derivative gravity theories that are in some sense natural extensions of cosmological Einstein's gravity with a unique maximally symmetric classical vacuum and only a massless spin-2 excitation about the vacuum and no other perturbative modes. These theories are of the Born-Infeld determinant form. We show that the macroscopic dynamical entropy as defined by Wald for bifurcate Killing horizons in these theories are equivalent to the geometric Bekenstein-Hawking entropy (or more pr...
Self-similarity in fate and transport of contaminants in groundwater
Ercan, Ali (2020-03-01)
Similarity within non-linear geophysical processes under different space and time has been investigated in literature to understand and model the sophisticated nature of these processes. This study deals with the self-similarity of the governing processes of fate and transport of contaminants in groundwater, which include advection, dispersion, sorption, and degradation, either by chemical reaction or microbiological interaction. As such, self-similarity conditions of three-dimensional advective-dispersive-...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Raoufi, A. E. Turgut, and F. Arvin, “Self-organized Collective Motion with a Simulated Real Robot Swarm,” 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/88721.