Radiative heat transfer in the discrete element method using distance based approximations

2021-03-01
A model to estimate radiative heat transfer in particle beds is developed for use in the Discrete Element Method (DEM). Monte Carlo ray tracing simulations are run to find the Radiation Distribution Factor (RDF) between pairs of particles and between particles and a wall, in particle beds with random packing. Curves are found to express the average RDF as a function of distance, and within DEM these aims arc used to estimate particle-particle and particle-wall radiative transfer. The resulting Distance Based Approximation model is computationally efficient and simple to implement. RDF-distance curves are given as a set of tables covering two particle emissivitics (0.65, 0.86), four wall emissivities (0.4, 0.6, 0.8,1.0), and five solid fractions (0.25, 035, 0.45, 0.55, 0.64). The accuracy of the model is investigated, with accuracy sufficient for many engineering applications shown. An initial implementation is demonstrated for a heat exchanger with a dense granular flow. (C) 2020 Elsevier B.V. All rights reserved.
POWDER TECHNOLOGY

Suggestions

Radiative Heat Transfer in the Dilute Zone of an Air-Fired Circulating Fluidized Bed Combustor and Its Oxy-Fired Retrofit
Ozen, G.; Aydin, F.; Selçuk, Nevin (2016-01-01)
A 2D radiation model based on method of lines (MOL) solution of discrete ordinates method (DOM) coupled with spectral line-based weighted sum of gray gases model (SLW) is developed to predict radiative heat fluxes along the dilute zone of the lignite-fired 150 kWt Middle East Technical University (METU) circulating fluidized bed combustor (CFBC) under both air-fired and oxy-fired conditions. The dilute zone is treated as an axisymmetric cylindrical enclosure containing a non-gray, absorbing-emitting-isotrop...
Radiative heat transfer modeling of cavities with inhomogeneous participating media using Monte Carlo ray tracing method
Dincer, Selim; Tarı, İlker; Department of Mechanical Engineering (2022-1-31)
A Monte Carlo ray-tracing method is developed to solve radiative heat transfer in inhomogeneous participating media with three-dimensional complex enclosures. The study covers the application of the Monte Carlo method to view factor calculations, surface-to-surface heat exchange problems, and gray and non-gray participating media analysis. Firstly, the present method is validated against the analytical solutions to calculate the view factor of a simple cylindrical e...
Monte Carlo solution of a radiative heat transfet problem in a 3-D rectangular enclosure containing absorbing, emitting and anisotropically scattering medium
Demirkaya, Gökmen; Arınç, Faruk; Department of Mechanical Engineering (2003)
In this study, the application of a Monte Carlo method (MCM) for radiative heat transfer in three-dimensional rectangular enclosures was investigated. The study covers the development of the method from simple surface exchange problems to enclosure problems containing absorbing, emitting and isotropically/anisotropically scattering medium. The accuracy of the MCM was first evaluated by applying the method to cubical enclosure problems. The first one of the cubical enclosure problems was prediction of radiat...
Hydrodynamic ve Thermal Modelling of Circulating Fluidized Bed Solar Receivers
Bilyaz, Serhat; Tarı, İlker (2016-11-17)
The riser tube solar receiver of a circulating fluidized bed solid particle absorption solar thermal energy system was numerically modeled for analyzing hydrodynamic and heat transfer behaviors of the solid particles in the riser. Hydrodynamics of the model is validated by comparing radial distribution of void fractions with an experimental study. For the heat transfer from the opaque walls of the receiver that is heated to high temperatures by the solar rays concentrated by the heliostat field, a simple fr...
HYDRODYNAMIC AND THERMAL MODELING OF CIRCULATING FLUIDIZED BED SOLAR RECEIVERS
Bilyaz, Serhat; Tarı, İlker (2016-11-17)
The riser tube solar receiver of a circulating fluidized bed solid particle absorption solar thermal energy system was numerically modeled for analyzing hydrodynamic and heat transfer behaviors of the solid particles in the riser. Hydrodynamics of the model is validated by comparing radial distribution of void fractions with an experimental study. For the heat transfer from the opaque walls of the receiver that is heated to high temperatures by the solar rays concentrated by the heliostat field, a simple fr...
Citation Formats
E. F. Johnson, İ. Tarı, and D. K. Baker, “Radiative heat transfer in the discrete element method using distance based approximations,” POWDER TECHNOLOGY, pp. 164–182, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/88813.