Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Discharge of Carbon Dioxide Using a Non Thermal Plasma Reactor
Date
2013-12-21
Author
Taylan, Onur
Berberoglu, Halil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
111
views
0
downloads
Cite This
This paper reports a numerical study on the discharge of carbon dioxide using a non-thermal dielectric barrier discharge (DBD) plasma reactor at ambient conditions. DBD plasma reactors have been used for various applications due to their ease of production, process control, operation at different conditions. The applications of DBD plasma reactors include discharge of gases. Carbon dioxide is a greenhouse gas formed as a byproduct of fossil fuel combustion. Use of DBD non-thermal plasma reactor can be a promising technology for carbon dioxide mitigation due to its operation at low temperatures, lack of need for catalysts, and flexibility in controlling the products generated. In this study, a tubular DBD non-thermal plasma reactor was modeled with different electrode materials separated by different dielectric materials. The aim was to provide guidelines for the design and material selection for optimizing DBD plasma reactors for CO2 discharge. A parametric set of simulations was performed using a finite element solver to investigate how electrode and dielectric materials affect the discharge volume of CO2 and power requirement of the non-thermal plasma discharge of CO2. The results showed that electrode material did not affect the discharge or the power requirement. However, dielectric material with higher permittivity or lower conductivity increased the gas discharge and power requirement. Among the analyzed materials, aluminum electrode and mica tube were suggested based on the simulation results for the maximum gas discharge and low power requirement.
URI
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/HT2013-17559
https://hdl.handle.net/11511/89357
DOI
https://doi.org/10.1115/ht2013-17559
Conference Name
Volume 2: Heat Transfer Enhancement for Practical Applications Heat and Mass Transfer in Fire and Combustion Heat Transfer in Multiphase Systems Heat and Mass Transfer in Biotechnology
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Dissociation of carbon dioxide using a microhollow cathode discharge plasma reactor: effects of applied voltage, flow rate and concentration
Taylan, Onur; Berberoglu, H. (2015-02-01)
This paper reports an experimental study on dissociating carbon dioxide (CO2) using a microhollow cathode discharge (MHCD) plasma reactor operated at 1 atm. The MHCD plasma reactors can be a promising technology for dissociating gases, including CO2, as they do not require catalysts, they operate at around room temperature, and can be inexpensively built and operated. In this study, CO2 balanced with the carrier gas argon (Ar) was fed through the MHCD reactor, and parametric experiments were conducted to in...
Dissociation of Carbon Dioxide Using a Microdischarge Plasma Reactor
Taylan, Onur; Berberoglu, Halil (2014-04-02)
This paper reports an experimental study on dissociation of carbon dioxide using a microdischarge plasma reactor at ambient conditions. Carbon dioxide contributes to more than 80% of the greenhouse gas emissions in United States. The microdischarge plasmas can be a very promising method in dissociating gases, including carbon dioxide, due to their lack of need for catalysts, operating at temperatures lower than conventional thermochemical dissociation processes and ease of operation. A microhollow cathode d...
Modeling of a Microhollow Cathode Discharge Reactor for Carbon Dioxide Dissociation
Taylan, Onur; Berberoglu, Halil (2014-04-02)
This paper reports a numerical study on carbon dioxide dissociation using a microhollow cathode discharge (MHCD) plasma reactor. These reactors can produce non-equilibrium plasmas and can be a promising technology for converting carbon dioxide into valuable chemicals and renewable fuels. However, these applications are currently in their early stages. In order to understand the effects of major design and operational parameters on the reactor performance a MHCD system was modeled and simulated. In this stud...
Effects of reactor geometry on dissociating CO2 and electrode degradation in a MHCD plasma reactor
Taylan, Onur; Pinero, Daniel; Berberoğlu, Halil (2018-08-01)
This paper reports an experimental study on the effects of reactor geometry for dissociating carbon dioxide using a microhollow cathode discharge (MHCD) reactor, and the associated electrode degradation. A MHCD reactor consists of two hollow metal electrodes that are separated by dielectric material. The geometric reactor parameters studied were the dielectric material thickness and the diameter of the reactor hole. Dielectric thicknesses of 150, 300 and 450 mu m and discharge hole diameters of 200, 400 and...
Self-consistent treatment of gas heating in modeling of a coaxial DBD in atmospheric pressure CO2
Zhou, Chen; Yuan, Chengxun; Kudryavtsev, Anatoly; Yasar Katircioglu, T.; Rafatov, İsmail; Yao, Jingfeng (2023-01-01)
This work is devoted to the numerical study of characteristics of dielectric barrier discharge maintained in a coaxial reactor in atmospheric pressure CO2. The numerical model is based on the drift-diffusion theory of gas discharges, and takes into account the gas heating in a self-consistent manner. The effect of incorporating gas heating into the discharge properties, specifically, on CO2 decomposition, is investigated for wide range of amplitude and frequency of the applied voltage. Calculations revealed...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Taylan and H. Berberoglu, “Discharge of Carbon Dioxide Using a Non Thermal Plasma Reactor,” presented at the Volume 2: Heat Transfer Enhancement for Practical Applications Heat and Mass Transfer in Fire and Combustion Heat Transfer in Multiphase Systems Heat and Mass Transfer in Biotechnology, Minneapolis, Minnesota, Amerika Birleşik Devletleri, 2013, Accessed: 00, 2021. [Online]. Available: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/HT2013-17559.