A practical analysis of sample complexity for structure learning of discrete dynamic Bayesian networks

2021-02-01
Geduk, Salih
Ulusoy, İlkay
Discrete Dynamic Bayesian Network (dDBN) is used in many challenging causal modelling applications, such as human brain connectivity, due to its multivariate, non-deterministic, and nonlinear capability. Since there is not a ground truth for brain connectivity, the resulting model cannot be evaluated quantitatively. However, we should at least make sure that the best structure results for the used modelling approach and the data. Later, this result can be appreciated by further correlated literature of anatomy and physiology. Nearly all of the previously published studies rest on limited data, which brings doubt to the resulting structures. In theory, an immense number of samples is required, which is impossible to collect in practice. In this study, the appropriate number of data which makes a dDBN modelling trustable is searched by practical experiments and found to be O(Kp+1) for binary and ternary-valued networks, where K is the cardinality of the random variables and p is the maximum number of parents possibly present in the network. If a modelling approach satisfies this amount of data, we can at least say that the resulting structure is trustable.

Suggestions

A new real-time suboptimum filtering and prediction scheme for general nonlinear discrete dynamic systems with Gaussian or non-Gaussian noise
Demirbaş, Kerim (Informa UK Limited, 2011-01-01)
A new suboptimum state filtering and prediction scheme is proposed for nonlinear discrete dynamic systems with Gaussian or non-Gaussian disturbance and observation noises. This scheme is an online estimation scheme for real-time applications. Furthermore, this scheme is very suitable for state estimation under either constraints imposed on estimates or missing observations. State and observation models can be any nonlinear functions of the states, disturbance and observation noises as long as noise samples ...
A temporal neural network model for constructing connectionist expert system knowledge bases
Alpaslan, Ferda Nur (Elsevier BV, 1996-04-01)
This paper introduces a temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems. The neural network model has a multi-layer structure, i.e. the number of layers is not limited. Also, the model has the flexibility of defining output nodes in any layer. This is especially important for connectionist expert system applications.
A neural network method for direction of arrival estimation with uniform circular dipole array in the presence of mutual coupling
Caylar, Selcuk; Leblebicioğlu, Mehmet Kemal; Dural, Guelbin (2007-06-16)
In recent years application of Neural Network (NN) algorithms in both target tracking problem and DoA estimation have become popular because of the increased computational efficiency This paper presents the implementation of modified neural network algorithm(MN-MUST) to the uniform circular dipole array in the presence of mutual coupling. In smart antenna systems, mutual coupling between elements can significantly degrade the processing algorithms. In this paper mutual coupling affects on MN-MUST has been i...
An improved method for inference of piecewise linear systems by detecting jumps using derivative estimation
Selcuk, A. M.; Öktem, Hüseyin Avni (Elsevier BV, 2009-08-01)
Inference of dynamical systems using piecewise linear models is a promising active research area. Most of the investigations in this field have been stimulated by the research in functional genomics. In this article we study the inference problem in piecewise linear systems. We propose first identifying the state transitions by detecting the jumps of the derivative estimates, then finding the guard conditions of the state transitions (thresholds) from the values of the state variables at the state transitio...
A Comparison of sparse signal recovery and approximate bayesian inference methods for sparse channel estimation
Uçar, Ayla; Candan, Çağatay; Department of Electrical and Electronics Engineering (2015)
The concept of sparse representation is one of the central methodologies of modern signal processing and it has had significant impact on numerous application fields such as communications and imaging. Sparsity expresses the idea that the information rate of a continuous time signal may be much smaller than suggested by its bandwidth, or that a discrete time signal depends on a number of degrees of freedom which is comparably much smaller than its (finite) length. With recent advances in sparse signal estim...
Citation Formats
S. Geduk and İ. Ulusoy, “A practical analysis of sample complexity for structure learning of discrete dynamic Bayesian networks,” OPTIMIZATION, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89391.