A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk

2021-06-01
Lotfi, Reza
Mehrjerdi, Yahia Zare
Pishvaee, Mir Saman
Sadeghieh, Ahmad
Weber, Gerhard Wilhelm
One of the challenges facing supply chain designers is designing a sustainable and resilient supply chain network. The present study considers a closed-loop supply chain by taking into account sustainability, resilience, robustness, and risk aversion for the first time. The study suggests a two-stage mixed-integer linear programming model for the problem. Further, the robust counterpart model is used to handle uncertainties. Furthermore, conditional value at risk criterion in the model is considered in order to create real-life conditions. The sustainability goals addressed in the present study include minimizing the costs, CO2 emission, and energy, along with maximizing employment. In addition, effective environmental and social life-cycle evaluations are provided to assess the associated effects of the model on society, environment, and energy consumption. The model aims to answer the questions regarding the establishment of facilities and amount of transported goods between facilities. The model is implemented in a car assembler company in Iran. Based on the results, several managerial insights are offered to the decision-makers. Due to the complexity of the problem, a constraint relaxation is applied to produce quality upper and lower bounds in medium and large-scale models. Moreover, the LP-Metric method is used to merge the objectives to attain an optimal solution. The results revealed that the robust counterpart provides a better estimation of the total cost, pollution, energy consumption, and employment level compared to the basic model.
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION

Suggestions

A MULTI OBJECTIVE MODEL FOR OPTIMIZATION OF A GREEN SUPPLY CHAIN NETWORK
PAKSOY, TURAN; Ozceylan, Eren; Weber, Gerhard Wilhelm (2010-02-04)
This study develops a model of a closed-loop supply chain (CLSC) network which starts with the suppliers and recycles with the decomposition centers. As a traditional network design, we consider minimizing the all transportation costs and the raw material purchasing costs. To pay attention for the green impacts, different transportation choices are presented between echelons according to their CO2 emissions. The plants can purchase different raw materials in respect of their recyclable ratios. The focuses o...
A new fuzzy multi-criteria framework for measuring sustainability performance of a supply chain
Erol, Ismail; Sencer, Safiye; Sarı, Ramazan (2011-04-15)
Sustainable supply chain performance measurement is aimed at addressing environmental, social and economic aspects of sustainable supply chain management. It can be argued that it is not easy to reduce all dimensions of sustainable supply chain to a single unit. Then, the issue is that all valuations should somehow be reducible to a single one-dimensional standard. Multi-criteria evaluation introduces a framework to remedy this issue. As a consequence, multi-criteria evaluation seems to supply a proper and ...
Robust parameter design of products and processes with an ordinal categorical response using random forests
Gülbudak Dil, Seçil; Köksal, Gülser; Department of Industrial Engineering (2018)
In industrial organizations, manufacturers aim to achieve target product performance with minimum variation. For that reason, finding optimal settings of product and process design parameters that make it possible to consistently achieve target product performance is an important design problem. In this study, we propose an alternative method to solve this problem for the case of an ordinal categorical product/process response. The method utilizes Random Forest (RF) for modelling mean and variance of the re...
A comparison of pure manufacturing and hybrid manufacturing–remanufacturing systems under carbon tax policy
Alegoz, Mehmet; Kaya, Onur; Bayındır, Zeynep Pelin (2021-10-01)
Collection and remanufacturing of used products can be considered as one of the options to improve the sustainability of a manufacturing system. In this study, we focus on production and sustainability level decisions in pure manufacturing and hybrid manufacturing–remanufacturing systems and compare the systemwide performances and the performances of supply chain actors under different settings in terms of economic and environmental performance measures. We consider four settings as follows. In the first se...
A Novel Interactive Fuzzy Programming Approach for Optimization of Allied Closed-Loop Supply Chains
Calik, Ahmet; YAPICI PEHLİVAN, NİMET; PAKSOY, TURAN; Weber, Gerhard Wilhelm (2018-01-01)
In recent years, the relationship between companies and suppliers has changed with the continuous rise in environmental awareness and customer expectations. In order to fulfill customers' needs, the actors in a Supply Chain (SC) network sometimes compete and sometimes cooperate with each other. In SC management, both competitive and collaborative strategies have become important and have required different points of view. In a collaborative environment, companies should strive for common targets with mutual...
Citation Formats
R. Lotfi, Y. Z. Mehrjerdi, M. S. Pishvaee, A. Sadeghieh, and G. W. Weber, “A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk,” NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, pp. 221–253, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89470.