Layout Based Ultra-Fast Short-Circuit Protection Technique for Parallel Connected GaN HEMTs

2021-01-01
Gallium Nitride Enhancement-Mode High Electron Mobility Transistors (GaN HEMTs) help to achieve high power density converter circuits thanks to their superior efficiency, higher switching speed and small package size. However, increased switching speed results in a sharp increase in short circuit (SC) current under a shoot-through fault with respect to other type of devices. GaN HEMTs can withstand the SC current only for several hundred nanoseconds. Therefore, fast SC protection solutions are critical for protecting power circuits. In this paper, the voltage induced by high slew rate of SC current on the high frequency power loop inductance resulting from the printed circuit board (PCB) layout is sensed to implement an ultra-fast short-circuit protection technique. The proposed technique does not increase circuit parasitics and provides flexibility in layout design that makes it suitable for parallel connected GaN HEMTs, which require symmetric layout design for equal current sharing. A multi-pulse test is conducted under 1.56 MHz switching frequency, 400 VDC bus voltage and 40 A load current by using parallel connected GaN HEMTs in a half-bridge configuration to verify the robustness and reliability of the proposed protection technique. Experimental results show that the proposed protection technique is able to detect SC fault within 40 ns and fault is completely cleared with a soft turn-off in 250 ns.
IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS

Suggestions

PCB Layout Based Short-Circuit Protection Scheme for GaN HEMTs
Alemdar, Ozturk Sahin; Karakaya, Furkan; Keysan, Ozan (2019-01-01)
Gallium Nitride Enhancement-Mode High Electron Mobility Transistors (GaN HEMTs) are superior to other power transistors in terms of efficiency, package size and switching speed which leads to increased power density in power converter applications. However, GaN HEMTs have much shorter short-circuit withstand time compared to the conventional devices, which is limited to several hundred nanoseconds. Therefore, reliable and fast protection solutions are required to protect GaN HEMTs from fatal over-current fa...
Characterization of gan transistors and developmentof bi-directional dc/dc converter with half-bridgehaving short circuit protection for parallel switches
Karakaya, Furkan; Keysan, Ozan; Department of Electrical and Electronics Engineering (2020-9)
Wide band-gap semiconductors are superior to Si-based semiconductors with their increased electron mobility and breakdown strength which leads to small package sizes, low parasitics, and increased switching frequency capability. Efficient and dense power converter could be obtained with wide band-gap devices especially GaN transistors. This thesis investigates the GaN HEMTs in terms of their characterization and pplication. The gate charge and output capacitance of GaN HEMTs are characterized by designed ex...
Strain induction on GE nanobeams by electrostatic actuation
Ayan, Arman; Yerci, Selçuk; Department of Electrical and Electronics Engineering (2018)
Germanium (Ge) is one of the most promising materials to accomplish the monolithic integration of optics and electronics on the same chip, mainly due to its compatibility with the existing silicon (Si) technology, high charge carrier mobility and high absorption coefficient in the near-infrared region. However, realization of efficient Ge light emitters requires techniques such as tensile strain induction, tin (Sn) incorporation and/or heavy n-type doping to alter its band gap enabling direct transitions. A...
Design of asymmetric coplanar strip folded dipole antennas /
Karaciğer, Kamil; Alatan, Lale; Department of Electrical and Electronics Engineering (2014)
This thesis includes the design, simulation, production and measurement of an asymmetric coplanar strip folded dipole antenna suitable to be used as an element in a linear array operating at S-band (2.7 GHz - 3.3 GHz). In this same manner, its usefulness as an array antenna is also explored in this thesis. This antenna element consists of a microstrip line feed, microstrip to coplanar stripline transition (BALUN) and asymmetric coplanar strip (ACPS) folded dipole. The planar folded dipole can be constructed...
Performance evaluation and comparison of low voltage grid-tied three-phase AC/DC converter configurations with SI and SIC semiconductor switches
Öztoprak, Oğuzhan; Hava, Ahmet Masum; Department of Electrical and Electronics Engineering (2019)
In this thesis, as compared to silicon IGBT (Si-IGBT) technology, the advantages of using higher efficiency and faster wide bandgap silicon carbide (SiC) semiconductor switches in low voltage three-phase grid-tied PWM DC/AC voltage source converters (VSCs) are investigated in terms of sizing, efficiency and economic considerations for MW-scale photovoltaic power plant applications. As the cost and energy efficiency of a VSC strongly affect the total system economics, this thesis proposes a design methodolog...
Citation Formats
F. Karakaya and O. Keysan, “Layout Based Ultra-Fast Short-Circuit Protection Technique for Parallel Connected GaN HEMTs,” IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, pp. 1–1, 2021, Accessed: 00, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9328269.