Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A CMOS switched-capacitor interface circuit for an integrated accelerometer
Date
2000-01-01
Author
Külah, Haluk
Najafi, K
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
259
views
0
downloads
Cite This
This paper presents a CMOS interface electronics for monolithic micromachined capacitive accelerometer systems. The interface electronics is a fully differential switched-capacitor charge integrator with its internal clock generator and sensor feedback circuit for closed-loop operation. The circuit is designed for open-loop and closed-loop operations, and provides both digital and differential analog outputs. One of the main advantages of this chip is that it can be monolithically integrated with the sensor, resulting in a considerably increased sensor module performance by decreasing the overall system area, minimizing the interface parasitics, and simplifying the packaging. The interface electronics operates at 200kHz sampling clock and provides an adjustable sensitivity between 0.3 and 1.2V/pF with better than 100aF expected resolution resulting in a 93dB dynamic range for 1Hz bandwidth. The total chip dissipates less than 7.2mW power from a single 5V supply, and occupies an area of 3.4x3.6 mm(2) in 3 mum one-metal two-poly p-well CMOS process of University of Michigan.
Subject Keywords
Switching circuits
,
Clocks
,
Sensor systems
,
Accelerometers
,
Accelerometers
,
Feedback circuits
,
Electronics packaging
,
Sampling methods
,
Dynamic range
,
Bandwidth
,
CMOS process
URI
https://hdl.handle.net/11511/53863
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A self-powered integrated interface circuit for low power piezoelectric energy harvesters
Chamanian, S.; Zorlu, O.; Külah, Haluk; Muhtaroglu, A. (2013-12-18)
This paper presents a CMOS integrated interface circuit for piezoelectric energy harvesters (PEH). A fully self-powered circuit, based on Synchronous Electric Charge extraction (SECE) technique, is implemented for non-resonant piezoelectric harvesters generating low power, in 10s to 100s mu W range. The circuit is realized in standard 180 nm UMC CMOS technology. A switch control circuit is designed and optimized to extract maximum power independently from excitation changes of the PEH. The total power loss ...
A Digitally programmable application specific integrated circuit for drive and data acquisition of imaging sensorsMethod of moments analysis of slotted waveguide antenna arrays
Bayhan, Nusret; Akın, Tayfun; Eminoğlu, Selim; Department of Electrical and Electronics Engineering (2014)
This thesis explains the implementation of a digital programmable Application Specific Integrated Circuit (ASIC) designed for imaging applications. The primary function of this ASIC is to drive imaging sensors and to do basic processing on the digital video data coming from the sensors. The ASIC is designed to handle the communication between the imaging sensor and the system. Using command based high-level instructions, this two-way communication is simplified. The ASIC can also be used to store and update...
A CMOS visible image sensor array using current mirroring integration readout circuitry
Akbay, Selim Sermet; Bircan, A.; Akın, Tayfun (null; 2000-08-30)
This paper reports the development of a CMOS visible sensor array using a high performance readout circuit called Current Mirroring Integration (CMI). The sensor element is a photodiode implemented using n-well and p+ -active layers available in any CMOS process. The current generated by optical excitation is mirrored and integrated in an off-pixel capacitor using the CMI readout circuit, which provides high injection efficiency, low input impedance, almost-zero and stable detector bias, and a high dynamic ...
A readout circuit for QWIP infrared detector arrays using current mirroring integration
Tepegoz, M; Akın, Tayfun (2003-09-18)
This paper reports a current mirroring integration (CMI) CMOS readout circuit for high-resolution Quantum Well Infrared Photodetectors (QWIPs). The circuit uses a feedback structure with current mirrors to provide stable bias voltage across the photodetectors, which can be adjusted between 0 V and 3.5V. The photodetector current is mirrored to an integration capacitor which can be placed outside of the unit pixel, reducing the pixel area and allowing to integrate the current on larger capacitances for large...
A 1024x768-12 mu m digital ROIC for uncooled microbolometer FPAs (Conference Presentation)
Akın, Tayfun (2017-04-13)
This paper reports the development of a new digital microbolometer Readout Integrated Circuit (D-ROIC), called MT10212BD. It has a format of 1024 × 768 (XGA) and a pixel pitch of 12μm. MT10212BD is Mikro Tasarim’s second 12μm pitch microbolometer ROIC, which is developed specifically for surface micro machined microbolometer detector arrays with small pixel pitch using high-TCR pixel materials, such as VOx and a Si. MT10212BD has an alldigital system on-chip architecture, which generates programmable timing...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Külah and K. Najafi, “A CMOS switched-capacitor interface circuit for an integrated accelerometer,” 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53863.