Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical implementation and analysis of a porous plasticity model for ductile damage prediction
Download
12626104.pdf
Date
2021-1-27
Author
Erdoğan, Can
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
471
views
455
downloads
Cite This
Ductile damage and fracture are known to be driven by the microvoid nucleation, growth, and coalescence. Porous micromechanical description of the ductile metals led to many phenomenological material models, which are used to predict the damage and fracture in engineering structures. In this thesis, the assessment of a rateindependent porous plasticity model is done through the representative volume element (RVE) calculations. The model is based on the formalism presented in [1] which is implemented as a user material subroutine through a prediction-correction scheme similar to a classical J2 plasticity framework. In this context, RVE’s are taken from a periodic array of spherical voids surrounded by an elastoplastic matrix material with isotropic exponential hardening, and they are deformed under a constant triaxial stress state with a displacement controlled method. The implementation of the model and the method of the RVE calculations are explained in detail. Limitations of the original model are discussed, and a heuristics extensions to the constitutive framework is proposed to obtain a better fit between the porous model and the unit cell results in terms of volumetric void growth and equivalent stress-strain relation. Numerical analyses show the possibility of achieving a compact framework with a straightforv ward implementation that agrees well with the RVE simulations for a wide range of stress triaxiality values. The present framework is compared with the widely used Gurson-Tvergaard-Needleman (GTN) model and the differences are discussed. A simple void coalescence relation is added to this framework to simulate the final failure phase of ductile deformation. Additionally, tension simulations with smooth and blunt notched specimens are performed with the GTN model, the present porous plasticity model, and the Johnson-Cook uncoupled damage model to address the model’s performance in a ductile fracture simulation. Results show that the present framework and the GTN model can yield almost identical results in notched simulations in terms of engineering stress-strain response and the porosity evolution. The thesis is concluded with an outlook and possible future improvements.
Subject Keywords
Porous Plasticity
,
Representative
,
Volume Element
,
Ductile Damage
,
Fracture
URI
https://hdl.handle.net/11511/89746
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Experimental Investigation of Crack Propagation Mechanisms in Commercially Pure Aluminium Plates
Tekoğlu, C.; Çelik, Ş.; Duran, H.; Efe, M.; Nielsen, K.L. (Elsevier BV; 2019)
The crack surface morphology in tearing of ductile metal plates depends on the mechanical properties, chemical composition and the microstructure of the plate material as well as on the loading conditions and the specimen geometry. This study assesses the crack surface morphologies observed in commercially pure aluminium plates (Al 1050 H14). Mode I tearing was performed in both single and double edge notched tensile test setups with specimens cut from five different plates with different thickness t, viz. ...
Formulation and Implementation of a New Porous Plasticity Model
Yalçınkaya, Tuncay; Erdoğan, Can; Tandoğan, İzzet Tarık (Elsevier BV; 2019-01-01)
A new rate independent porous plasticity model is proposed for the modeling of ductile damage initiation due to void growth in metallic materials. The model is based on a simple yield description which includes two porosity functions that affect both deviatoric and hydrostatic stress evolution. The current version of the model predicts damage solely due to void growth and it should be extended to include the void initiation and coalescence criteria. The numerical examples study the performance of the develo...
Experimental Determination and Analytical Model of Friction Torque of a Double Row Roller Slewing Bearing
Dindar, Ahmet; Akkök, Metin; Çalışkan, Mehmet (2017-03-01)
In this paper, investigation on the friction torque of a double row roller slewing bearing which is operated in the azimuth axis of a gun turret is performed. For this purpose, a friction measurement test setup is designed and friction torque measurements are conducted. Tests are performed at low speeds and various loading conditions. Friction sources are decoupled and examined separately in order to fully understand effect of each component on friction torque of the slewing bearing. Therefore, friction cau...
Fatigue Precracking Time Estimates for Three-Point Bending Specimens
Ghasabi, A. Alipour; Motameni, A; Kadıoğlu, Fevzi Suat (Springer Science and Business Media LLC, 2019-10-01)
Specimens containing sharp cracks are needed in certain types of mechanical tests, first and foremost for fracture toughness measurement of materials. Their use, however, is not just limited to this type of test. Another category of experiments deals with characterizing nonlinear vibrations of beams containing breathing cracks. To produce cracked beam specimens, fatigue cracks can be grown ahead of sharp notches under controlled loading. ASTM E399 and ASTM E1820 standards provide guidance on such procedures...
Mixed-mode fracture analysis of orthotropic functionally graded materials under mechanical and thermal loads
Dağ, Serkan; Sarikaya, Duygu (Elsevier BV, 2007-12-01)
Mixed-mode fracture problems of orthotropic functionally graded materials (FGMs) are examined under mechanical and thermal loading conditions. In the case of mechanical loading, an embedded crack in an orthotropic FGM layer is considered. The crack is assumed to be loaded by arbitrary normal and shear tractions that are applied to its surfaces. An analytical solution based on the singular integral equations and a numerical approach based on the enriched finite elements are developed to evaluate the mixed-mo...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Erdoğan, “Numerical implementation and analysis of a porous plasticity model for ductile damage prediction,” M.S. - Master of Science, Middle East Technical University, 2021.