Maximizing the energy potential of urban sludge treatment: An experimental study and a scenario-based energy analysis focusing on anaerobic digestion with ultrasound pretreatment and sludge combustion

With stricter regulations and concerns over sustainability, combustion can be a beneficial handling method as dried sludge can be used as an energy source. Anaerobic digestion of sludge also provides energy in the form of biogas without the need for sludge drying. Yet, anaerobic digestion reduces the calorific value (CV) of sludge. In this study, the effect of anaerobic digestion (with or without ultrasound pretreatment) on the fuel properties of sludge were examined through laboratory experiments. Addi-tionally, a number of sludge management strategies were evaluated to maximize energy gain. Temporal changes in fuel properties of sludge were tracked during digestion. Results showed that sonication provided a 3.4-fold increase in soluble COD, 15% increase in biogas production and 32% increase in methane production, while the CV of sludge reduced from 14.7 kJ/g to 10 kJ/g. Energy balances for a number of sludge management process trains showed that the optimal method was the combination of thickening, dewatering, thermal drying and combustion. Addition of digestion and ultrasound pre-treatment to this scenario reduced the energy gained from sludge. Yet, high ambient temperatures impacted results such that the net energy gain by the scenario including digestion and combustion was close to that of combustion only.


Modeling natural attenuation of petroleum hydrocarbons (btex) in heterogeneous aquifers
Uçankuş, Tuğba; Ünlü, Kahraman; Department of Environmental Engineering (2005)
Natural Attenuation can be an effective cleanup option for remediation of Groundwater contamination by BTEX. One of the important aspects of the methodology that has been recognized recently is that mass removal rates, the most important parameters used to determine effectiveness of the methodology, is controlled by groundwater flow regime, which to a large extent controlled by aquifer heterogeneity. Considering this recognition, the primary objective of this research is to quantitatively describe the relat...
Emissions of NOx and SO2 from Coals of Various Ranks, Bagasse, and Coal-Bagasse Blends Burning in O-2/N-2 and O-2/CO2 Environments
Kazanç Özerinç, Feyza; Crnkovic, Paula Manoel; Levendis, Yiannis A. (2011-07-01)
Oxy-coal combustion is a viable technology, for new and existing coal-fired power plants, as it facilitates carbon capture and, thereby, can mitigate climate change. Pulverized coals of various ranks, biomass, and their blends were burned to assess the evolution of combustion effluent gases, such as NOx, SO2, and CO, under a variety of background gas compositions. The fuels were burned in an electrically heated laboratory drop-tube furnace in O-2/N-2 and O-2/CO2 environments with oxygen mole fractions of 20...
Parameterization of built environment for wind resource assessment
Sakçak, Şafak; Tanyer, Ali Murat; Pekeriçli, Mehmet Koray; Department of Building Science in Architecture (2018)
Use of wind power for energy generation in urban areas is gaining importance considering the energy consumption and environmental impact behaviors of built environments. Therefore, assessment of urban wind resource is crucial. The study of air flows in cities is also related to other concerns as natural ventilation, air contamination and pedestrian comfort. Two of primary research topics proposed in feasibility studies for urban wind energy are improvement on the understanding of urban wind flows with devel...
Comparison of groundwater recharge estimation techniques: a case study from the Kucuk Menderes River basin in Turkey
Gundogdu, A; Yazıcıgil, Hasan; Kirmizitas, H (2000-04-01)
Quantification of groundwater recharge is a basic prerequisite for efficient groundwater management. While there are several approaches to estimating groundwater recharge rates, some of the approaches proposed cannot be applied in basin-wide hydrogeological investigations due to a lack of data. Thus, some conventional recharge estimation techniques for which data are most often available have to be used in estimating groundwater recharge. In this study, water level fluctuation, the precipitation vs water le...
Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix
Liu, Ruijia; Liu, Guijian; Yousaf, Balal; Niu, Zhiyuan; Abbas, Qumber (2022-01-01)
Biomass, as a renewable and sustainable energy resource, can be converted into environmentally friendly and practically valuable biofuels and chemical materials via pyrolysis. However, the process optimization and pyrolysis efficiency are restricted by the limited perception of the complicated mechanisms and kinetics for biomass pyrolysis. Here, to establish an in-depth mechanism model for biomass pyrolysis, we presented a novel investigation for the thermal evolutions and pyrolysis kinetics of the function...
Citation Formats
E. B. Çelebi, A. Aksoy, and F. D. Sanin, “Maximizing the energy potential of urban sludge treatment: An experimental study and a scenario-based energy analysis focusing on anaerobic digestion with ultrasound pretreatment and sludge combustion,” ENERGY, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: