Enhanced removal of hexavalent chromium from aqueous media using a highly stable and magnetically separable rosin-biochar-coated TiO2@C nanocomposite

Yousaf, Balal
Liu, Guijian
Abbas, Qumber
Wang, Ruwei
Ullah, Habib
Mian, Md Manik
Amina, Amina
Rashid, Audil
Recently, nanosized metal-oxides have been extensively investigated for their ability to remove metal ions from aqueous media. However, the activity and capacity of these nanosized metal-oxides for removing metal ions decrease owing to their agglomeration in aqueous media. Herein, we synthesized a highly stable and magnetically separable rosin-biochar-coated (RBC) TiO2@C nanocomposite through a facile and environment-friendly wet chemical coating process, followed by a one-step heating route (pyrolysis) for efficient removal of Cr(VI) from aqueous solution. An array of techniques, namely, TEM, HRTEM, TEM-EDS, XRD, FTIR, VSM, BET and TGA, were used to characterize the prepared nanocomposite. The pyrolysis of rosin into biochar and the fabrication of Fe onto the RBC-TiO2@C nanocomposite were confirmed by FTIR and XRD examination, respectively. Moreover, TEM and HRTEM images and elemental mapping using TEM-EDS showed good dispersion of iron and carbon on the surface of the RBC-TiO2@C nanocomposite. Sorption of Cr(VI) ions on the surface of the RBC-TiO2@C nanocomposite was very fast and efficient, having a removal efficiency of similar to 95% within the 1st minute of reaction. Furthermore, thermodynamic analysis showed negative values of Gibb's free energy at all five temperatures, indicating that the adsorption of Cr(VI) ions on the RBC-TiO2@C nanocomposite was favorable and spontaneous. Conclusively, our results indicate that the RBC-TiO2@C nanocomposite can be used for efficient removal of Cr(VI) from aqueous media due to its novel synthesis and extraordinary adsorption efficacy during a short time period.


Synthesis of new conjugated donor-acceptor type polymers for photovoltaic device applications
Akpınar, Hava Zekiye; Toppare, Levent Kamil; Özkan, Necati; Department of Polymer Science and Technology (2015)
Electrochromism and photoelectric effect are the mostly investigated areas of conducting polymers. In electrochromism, electrochemical parameters of the polymers are firstly examined. Spectroelectrochemical studies are performed with specified wavelengths. Parameters, such as optical contrast and switching times of the polymer films are explored. In bulk heterojunction polymer solar cells, semiconducting polymer materials in combination with fullerene are used as the active layer. Photons are absorbed by co...
Üner, Deniz; KING, TS (Elsevier BV, 1995-09-15)
Metal dispersions of silica-supported ruthenium catalysts determined by the standard volumetric chemisorption technique were found to be inaccurate due to irreversible spillover of hydrogen to the support. Direct evidence was obtained via in situ H-1 NMR for an irreversibly bound component of the hydrogen that migrated from the metal to the support on a time scale of tens of minutes or longer at room temperature. It was also shown in this work that hydrogen saturated the surface of the metal particles on a ...
High-quality alignment of nematic liquid crystals using periodic nanostructures created by nonlinear laser lithography
Pavlov, Ihor; Dobrovolskiy, A. M.; Kadan, V. M.; Blonskiy, I. V.; Kazantseva, Z. I.; Gvozdovskyy, I. A. (2018-10-01)
It is well known that today two main and well studied methods for alignment of liquid crystals has been used, namely: rubbing and photoalignment technologies, that lead to the change of anisotropic properties of aligning layers and long-range interaction of the liquid crystal molecules in a mesophase. In this manuscript, we use the nonlinear laser lithography technique, which was recently presented as a fast, relatively low-cost method for a large area micro and nanogrooves fabrication based on laser-induce...
Investigation of thermoluminescence properties of metal oxide doped lithium triborate
Oezdemir, Zeynep; Yılmaz, Ayşen; Yılmaz, Aysun (2007-10-01)
In this study, lithium triborate (LiB3O5) doped with different metal oxides were investigated to explore its thermoluminescence properties. Solid-state reaction method was employed for the synthesis of the desired materials. The formation of the produced phases was confirmed by Powder X-Ray Diffraction (XRD), Infrared (IR), Differential Thermal Analysis (DTA) and Scanning Electron Microscopy (SEM) examinations. It was found that, CuO and Al2O3 doped lithium triborate samples exhibit very significant thermol...
Enhancement of Laser Damage Resistance at 1064 nm of High and Anti-Reflective Optical Multilayers by Tailoring the Electric Field Distribution and Post-Annealing
Aydogdu, G. H.; Batman, H.; Cosar, M. B.; Ozhan, A. E. S. (2016-05-13)
In this study, multilayer Ta2O5/SiO2 and HfO2/SiO2 films were deposited on glass substrates by ion beam sputtering and physical vapor deposition methods, respectively. The effect of electric field distribution and heat treatment of these oxide multilayers on laser damage resistance were investigated systematically. Optical performance was characterized by spectrophotometer. Electric field analysis and optic system design were performed by thin film design software. LIDT (laser-induced damage threshold) meas...
Citation Formats
B. Yousaf et al., “Enhanced removal of hexavalent chromium from aqueous media using a highly stable and magnetically separable rosin-biochar-coated TiO2@C nanocomposite,” RSC ADVANCES, pp. 25983–25996, 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89974.