Frequency estimation of a single real-valued sinusoid: An invariant function approach

2021-08-01
An invariant function approach for the computationally efficient (non-iterative and gridless) maximum likelihood (ML) estimation of unknown parameters is applied on the real-valued sinusoid frequency estimation problem. The main attraction point of the approach is its potential to yield a ML-like performance at a significantly reduced computational load with respect to conventional ML estimator that requires repeated evaluation of an objective function or numerical search routines. The numerical results indicate that the suggested estimator closely tracks the Cramer-Rao bound in the asymptotic region and performs very close to the ML estimator in other regions.
Signal Processing

Suggestions

Fine resolution frequency estimation from three DFT samples: Case of windowed data
Candan, Çağatay (2015-09-01)
An efficient and low complexity frequency estimation method based on the discrete Fourier transform (DFT) samples is described. The suggested method can operate with an arbitrary window function in the absence or presence of zero-padding. The frequency estimation performance of the suggested method is shown to follow the Cramer-Rao bound closely without any error floor due to estimator bias, even at exceptionally high signal-to-noise-ratio (SNR) values.
MUTUAL COUPLING EFFECTS OF FINITE RECTANGULAR PHASED-ARRAYS
YAVUZ, H; BUYUKDURA, OM (1994-04-14)
A rigorous integral equation formulation for the analysis of a phased array of flangemounted waveguide apertures is given for a finite number of elements and nonuniform spacings. The resulting set of ihtegrd equations is reduced to a matrix equation called the coupling matrix which relates the coefficients of all the modes in all the waveguides to one another. The solution then yields the dominant mode reflection coefficient, coefficients of scattered modes and hence the field in each waveguide. The blockTo...
Adaptive Harmonic Balance Methods, A Comparison
Sert, Onur; Ciğeroğlu, Ender (2016-01-28)
Harmonic balance method (HBM) is one of the most popular and powerful methods, which is used to obtain response of nonlinear vibratory systems in frequency domain. The main idea of the method is to express the response of the system in Fourier series and converting the nonlinear differential equations of motion into a set of nonlinear algebraic equations. System response can be obtained by solving this nonlinear equation set in terms of the unknown Fourier coefficients. The accuracy of the solution is great...
Numerical methods for multiphysics flow problems
Belenli Akbaş, Mine; Kaya Merdan, Songül; Rebholz, Leo G.; Department of Mathematics (2016)
In this dissertation, efficient and reliable numerical algorithms for approximating solutions of multiphysics flow problems are investigated by using numerical methods. The interaction of multiple physical processes makes the systems complex, and two fundamental difficulties arise when attempting to obtain numerical solutions of these problems: the need for algorithms that reduce the problems into smaller pieces in a stable and accurate way and for large (sometimes intractable) amount of computational resou...
Residual based Adaptive Unscented Kalman filter for satellite attitude estimation
Söken, Halil Ersin (2012-12-01)
Determining the process noise covariance matrix in Kalman filtering applications is a difficult task especially for estimation problems of the high-dimensional states where states like biases or system parameters are included. This study introduces a simplistic residual based adaptation method for the Unscented Kalman Filter (UKF), which is used for small satellite attitude estimation. For a satellite with gyros and magnetometers onboard, the proposed adaptive UKF algorithm estimates the attitude as well as...
Citation Formats
Ç. Candan and U. Çelebi, “Frequency estimation of a single real-valued sinusoid: An invariant function approach,” Signal Processing, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104126929&origin=inward.