Mid-spliced end-plated replaceable links for eccentrically braced frames

2021-06-15
Özkılıç, Yasin Onuralp
Bozkurt, Mehmet Bakır
Topkaya, Cem
Eccentrically braced frames (EBFs) can be re-used after a major seismic event by replacing the link members. Recent years have witnessed the development of numerous replaceable links. Among various details developed for this purpose, extended end-plated replaceable links are found to be the most efficient. The use of these links enables the engineer to minimize the size and the weight of the part to be replaced. In addition, the performance of end-plated links is similar to that of conventional links. Research reported to date has shown that end-plated links have disadvantages in terms of removal and replacement. Large axial forces can develop within the link member. Removal and replacement operations may require the use of hydraulic jacks to push the ends of the collector beams and the flame cutting of the links to gradually release the residual stresses and deformations. More important are the difficulties associated with link replacement under residual frame drifts. A novel detachable, replaceable link is proposed in this study which employs a splice connection at the mid-length of the link. The splice connection consists of channel sections welded to both parts of the replaceable link. The detail employed provides an erection tolerance which facilitates easy removal and enables replacement under residual frame drifts. Proof-of-concept testing of the proposed links was performed on 3 specimens where the type of force transfer in the splice connection was considered as the prime variable. All specimens failed at link rotation angles that were significantly higher than the link rotation angle required by AISC341 and demonstrated the potential of the proposed link concept. Complementary finite element parametric studies were conducted to validate the design procedure developed for the proposed replaceable link concept.
Engineering Structures

Suggestions

Development of detachable replaceable links for eccentrically braced frames
Bozkurt, Mehmet Bakir; Azad, Sina Kazemzadeh; Topkaya, Cem (2019-08-01)
Eccentrically braced frames (EBFs) can be repaired after a major earthquake by replacing the links. The link replacement is not a straightforward process and is influenced by the type of the link and the amount of residual frame deformations. The past decade has witnessed the development of different types of replaceable links such as end-plated links, web connected links, bolted flange and web spliced links, and collector beam and brace spliced links. All of the developed replaceable link details, except t...
Experimental and numerical studies on replaceable links for eccentrically braced frames
Özkılıç, Yasin Onuralp; Topkaya, Cem; Department of Civil Engineering (2020)
Eccentrically braced frames (EBFs) are extensively used as a steel lateral load resisting systems in high seismic regions since EBFs simulate ductility and high energy absorption capacity of moment resisting frames (MRFs) and high stiffness of concentrically braced frames (CBFs). High stiffness and high ductility of EBFs are obtained from diagonal braces and yielding of link element, respectively. This thesis reports findings of a three phase experimental and numerical research program on replaceable links ...
Stability of beams in steel eccentrically braced frames
Yigitsoy, Gul; Topkaya, Cem; Okazaki, Taichiro (2014-05-01)
When an eccentrically braced frame (EBF) is subjected to a severe seismic event, large axial force and bending moments are produced in the beam outside of the link Designers face significant difficulties in meeting the capacity design requirement to keep these beams elastic. On the other hand, previous research suggests that controlled yielding in the beams is not detrimental to EBF performance as long as stability of the beam is maintained. A computational study was undertaken to investigate the stability ...
Splice Connection Details for Eccentrically Braced Frame Replaceable Links
Topkaya, Cem (null; 2019-09-20)
Eccentrically braced frames (EBFs) can be used as a lateral load resisting system in seismic prone regions. A typical EBF consists of links, beams, columns and braces. Links are the fuse members providing energy dissipation during an earthquake. After a seismic event, damaged links need to be replaced with the new ones to recover initial stiffness and ductility of the structure. A comprehensive experimental research program has been undertaken to develop new replaceable link details. One of the proposed det...
Numerical investigation of braces and replaceable links for steel frames
Kazemzadeh Azad, Sina; Topkaya, Cem; Department of Civil Engineering (2021-2-10)
Concentrically braced frames (CBFs) and eccentrically braced frames (EBFs) are among popular lateral load resisting systems for steel structures. The present study investigates different aspects of these systems. The part devoted to EBFs begins with a comprehensive review of research where 22 future research needs are identified and presented. This is followed by an experimental study on the low-cycle fatigue behavior of links, which are the most important members of an EBF. Results of the experimental stud...
Citation Formats
Y. O. Özkılıç, M. B. Bozkurt, and C. Topkaya, “Mid-spliced end-plated replaceable links for eccentrically braced frames,” Engineering Structures, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103109523&origin=inward.