Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
End-to-end learned image compression with conditional latent space modeling for entropy coding
Date
2021-01-24
Author
Yesilyurt, Aziz Berkay
Kamışlı, Fatih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
278
views
0
downloads
Cite This
The use of neural networks in image compression enables transforms and probability models for entropy coding which can process images based on much more complex models than the simple Gauss-Markov models in traditional compression methods. All at the expense of higher computational complexity. In the neural-network based image compression literature, various methods to model the dependencies in the transform domain/latent space are proposed. This work uses an alternative method to exploit the dependencies of the latent representation. The joint density of the latent representation is modeled as a product of conditional densities, which are learned using neural networks. However, each latent variable is not conditioned on all previous latent variables as in the chain rule of factoring joint distributions, but only on a few previous variables, in particular the left, upper and upper-left spatial neighbor variables based on a Markov property assumption for a simpler model and algorthm. The compression performance is comparable with the state- of-the-art compression models, while the conditional densities require a much simpler network and training time due to their simplicity and less number of parameters then its counterparts.
Subject Keywords
image compression
,
transform coding
,
deep learning
,
conditional modeling
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099287734&origin=inward
https://hdl.handle.net/11511/90858
DOI
https://doi.org/10.23919/eusipco47968.2020.9287779
Conference Name
28th European Signal Processing Conference, EUSIPCO 2020
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
End-to-end learned image compression with conditional latent space modelling for entropy coding
Yeşilyurt, Aziz Berkay; Kamışlı, Fatih; Department of Electrical and Electronics Engineering (2019)
This thesis presents a lossy image compression system based on an end-to-end trainable neural network. Traditional compression algorithms use linear transformation, quantization and entropy coding steps that are designed based on simple models of the data and are aimed to be low complexity. In neural network based image compression methods, the processing steps, such as transformation and entropy coding, are performed using neural networks. The use of neural networks enables transforms or probability models...
Deep Learning-Based Hybrid Approach for Phase Retrieval
IŞIL, ÇAĞATAY; Öktem, Sevinç Figen; KOÇ, AYKUT (2019-06-24)
We develop a phase retrieval algorithm that utilizes the hybrid-input-output (HIO) algorithm with a deep neural network (DNN). The DNN architecture, which is trained to remove the artifacts of HIO, is used iteratively with HIO to improve the reconstructions. The results demonstrate the effectiveness of the approach with little additional cost.
DEEP LEARNING-BASED UNROLLED RECONSTRUCTION METHODS FOR COMPUTATIONAL IMAGING
Bezek, Can Deniz; Öktem, Sevinç Figen; Department of Electrical and Electronics Engineering (2021-9-08)
Computational imaging is the process of forming images from indirect measurements using computation. In this thesis, we develop deep learning-based unrolled reconstruction methods for various computational imaging modalities. Firstly, we develop two deep learning-based reconstruction methods for diffractive multi-spectral imaging. The first approach is based on plug-and-play regularization with deep denoisers whereas the second one is an end-to-end learned reconstruction based on unrolling. Secondly, we con...
Efficient algorithms for convolutional inverse problems in multidimensional imaging
Doğan, Didem; Öktem, Figen S.; Department of Electrical and Electronics Engineering (2020)
Computational imaging is the process of indirectly forming images from measurements using image reconstruction algorithms that solve inverse problems. In many inverse problems in multidimensional imaging such as spectral and depth imaging, the measurements are in the form of superimposed convolutions related to the unknown image. In this thesis, we first provide a general formulation for these problems named as convolutional inverse problems, and then develop fast and efficient image reconstruction algorith...
Fast Algorithms for Digital Computation of Linear Canonical Transforms
Koc, Aykut; Öktem, Sevinç Figen; Ozaktas, Haldun M.; Kutay, M. Alper (2016-01-01)
Fast and accurate algorithms for digital computation of linear canonical transforms (LCTs) are discussed. Direct numerical integration takes O.N-2/time, where N is the number of samples. Designing fast and accurate algorithms that take O. N logN/time is of importance for practical utilization of LCTs. There are several approaches to designing fast algorithms. One approach is to decompose an arbitrary LCT into blocks, all of which have fast implementations, thus obtaining an overall fast algorithm. Another a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. B. Yesilyurt and F. Kamışlı, “End-to-end learned image compression with conditional latent space modeling for entropy coding,” presented at the 28th European Signal Processing Conference, EUSIPCO 2020, Amsterdam, Hollanda, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099287734&origin=inward.