Magnetically separable transition metal nanoparticles as catalysts in hydrogen generation from the hydrolysis of ammonia borane

Hydrogen Energy Publications LLCIt reviews the available reports on the preparation and use of magnetically separable transition metal nanoparticles (TMNs) as reusable catalysts for the hydrolytic dehydrogenation of ammonia borane (AB). After a short introduction, the review starts with the papers on the employment of intrinsically magnetic TMNs as catalysts for releasing H2 gas from AB, which includes colloidal nanoparticles of intrinsically magnetic metals, TMNs in combination with materials having large surface area, and multimetallic composites containing at least one intrinsically magnetic metal together with an additional component usually acting as support or stabilizer. This is followed by a section reviewing the papers on core-shell multimetallic nanoparticles with one intrinsically magnetic metal in either core or shell used for catalyzing the hydrolysis of AB. It follows the review of papers on TMNs supported on Fe3O4, CoFe2O4, or Co3O4 forming magnetically separable catalysts for the same reaction. Then, a short section reviews the available reports on metal nanoparticles supported on carbon-coated iron. The last section gives a summary list of conclusions.
International Journal of Hydrogen Energy


Magnetically Separable Rh-0/Co3O4 Nanocatalyst Provides over a Million Turnovers in Hydrogen Release from Ammonia Borane
Akbayrak, Serdar; Tonbul, Yalcin; Özkar, Saim (2020-03-16)
Cobalt(II,III) oxide nanopowders are used as supporting materials for rhodium(0) nanoparticles forming Rh-0/Co3O4 nanocatalysts, which can be prepared by impregnation and sodium borohydride reduction of Rh3+ ions on the surface of the oxide support. Magnetically separable Rh-0/Co3O4 nanoparticles are isolated from the reaction medium by an external magnet and characterized using various analytical techniques. Rh-0/Co3O4 nanoparticles are highly active and reusable catalysts with a long lifetime in hydrolyti...
Hydrolytic dehydrogenation of ammonia borane catalyzed by reduced graphene oxide supported monodisperse palladium nanoparticles: High activity and detailed reaction kinetics
Kilic, Buket; Sencanli, Selin; Metin, Onder (2012-09-01)
A highly active and stable catalyst for the hydrolytic dehydrogenation of ammonia borane (AB) was prepared by supporting monodisperse palladium nanoparticles (Pd NPs) on reduced graphene oxide (RGO) via a facile method. RGO was prepared via modified chemical route and used as support matrices for monodisperse Pd NPs that were formed by the reduction of palladium(II) acetylacetonate by borane tert-butylamine complex in the presence of oleylamine. RGO supported Pd NPs (RGO@Pd) show high activity and stability...
Palladium nanoparticles supported on chemically derived graphene: An efficient and reusable catalyst for the dehydrogenation of ammonia borane
Metin, Onder; Kayhan, Emine; Özkar, Saim; Schneider, Jorg J. (2012-05-01)
Chemically derived graphene (CDG) was prepared by hydrazine hydrate reduction of graphene oxide and used as support for palladium nanoparticles (Pd NPs) generated ex situ with controllable particle size and dispersion. The Pd NPs supported on CDG were well characterized by using a combination of advance analytical techniques and employed as catalyst in the dehydrogenation and hydrolysis of ammonia borane (AB) in organic solvents and aqueous solutions, respectively. Monodisperse Pd NPs of 4.5 nm were prepare...
Nanoalumina-supported rhodium(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (2017-10-01)
Rhodium(0) nanoparticles were in situ formed from the reduction of rhodium(II) octanoate and supported on the surface of nanoalumina yielding Rh(0)/nanoAl(2)O(3) which is highly active catalyst in hydrogen generation from the methanolysis of ammonia borane at room temperature. The kinetics of nanoparticle formation can be followed just by monitoring the volume of hydrogen gas evolved from the methanolysis of ammonia borane. The evaluation of the kinetic data gives valuable insights to the slow, continuous n...
Cobalt ferrite supported platinum nanoparticles: Superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Özkar, Saim (2021-08-15)
In this work, platinum(0) nanoparticles are deposited on the surface of magnetic cobalt ferrite forming magnetically separable Pt-0/CoFe2O4 nanoparticles, which are efficient catalysts in H-2 generation from the hydrolysis of ammonia borane. Catalytic activity of Pt-0/CoFe2O4 nanoparticles decreases with the increasing platinum loading, parallel to the average particle size. Pt-0/CoFe2O4 (0.23% wt. Pt) nanoparticles have an average diameter of 2.30 +/- 0.47 nm and show an extraordinary turnover frequency of...
Citation Formats
S. Özkar, “Magnetically separable transition metal nanoparticles as catalysts in hydrogen generation from the hydrolysis of ammonia borane,” International Journal of Hydrogen Energy, pp. 21383–21400, 2021, Accessed: 00, 2021. [Online]. Available: