Influence of warm mix additive on internal structure of dry process crumb rubber modified mixtures

2021-09-01
Performance of asphalt concrete depends highly on its internal structure, which is affected by production temperature, compaction effort and material properties. This study aims to evaluate the internal structure and performance of dry process crumb rubber modified mixtures with warm mix asphalt (WMA) additives. In order to evaluate the effect of WMA additive on these properties, dry process crumb rubber modified WMA mixtures were prepared under different production temperatures applying different compaction efforts. In addition, a radial inhomogeneity analysis tool is developed considering the size fraction and location of aggregate particles, while iPas software is utilized to quantify the contact zone properties. The performance of each test mixture is also evaluated through stability, rutting, and cracking tests. The study outcomes indicate that WMA additive reduces the segregation level of dry process crumb rubber mixtures. In spite of the favorable influence of the WMA additive, there seems a slight decrease in the total contact length and number of contact points of the samples. It is shown that both the control and the WMA mixtures can offer similar performances when compacted at lower temperatures or the same temperature under less compaction effort. The use of DryWMA allows for longer haul distance, less energy for production and limited exposure to fumes during construction.
Journal of Cleaner Production

Suggestions

Effect of Fly Ash Fineness on the Activation of Geopolymer Concrete
Aleessa Alam, Burhan; Yaman, İsmail Özgür (2012-10-05)
In the field of construction materials and particularly in concrete, cement is considered as a key element since it generates a strong and durable material through a simple hydration process. However, for many reasons (mainly economic and environmental) researchers are trying to find a new material that could replace cement or at least part of it as a binding agent in concrete. Regarding this issue, cement replacement materials like fly ash and slag have taken the lead during the last few decades. These mat...
Effect of fiber type and concrete strength on the energy absorption capacity of fiber reinforced concrete plates under quasi-static bending
Mercan, Ali Macit; Yaman, İsmail Özgür; Department of Civil Engineering (2019)
With all the known solid advantages of concrete, it has also limitations in its mechanical properties, such as low ductility, tensile strength and energy absorption capacity/toughness. In order to eliminate or minimize these limitations, some developments have been worked up by introducing natural or artificial fibers into the concrete mixture. The main scope of this thesis is to observe the effect of different fiber types and dosages on the performance of two different concrete grades. Two steel fibers wit...
Effect of alkali-silica reaction expansion on mechanical properties of concrete
Hafçı, Alkan; Turanlı, Lütfullah; Department of Civil Engineering (2013)
Alkali-silica reaction (ASR) is a chemical deterioration process which arises in concrete due to reactive aggregate from its constituent, sufficient alkalis from cement or external resources and humidity about 85%. ASR gel, formed by the reaction, absorbs water and expands so that it causes expansion and cracking in concrete. ASR has detrimental effects on mechanical properties of concrete. Therefore, ASR which is a long and a constantly progressive reaction may become a threat to the safety of concrete str...
Influence of soot on radiative heat transfer in bubbling fluidized bed combustors
Yaşar, Mehmet Soner; Selçuk, Nevin; Külah, Görkem (2021-08-01)
The effect of soot particles and aggregates on radiative heat transfer in bubbling fluidized bed combustors is investigated. For this purpose, a soot radiative property model based on Rayleigh scattering theory is coupled with in-house developed 1-D gray and spectral radiation codes and a 3-D spectral radiation code based on method of lines solution of discrete ordinates method for the application of (i) a 1-D slab problem involving combustion gases and soot and (ii) freeboard of a 0.3 MWt atmospheric bubbl...
Influence of ground motion intensity on the performance of low- and mid-rise ordinary concrete buildings
Akkar, S; Sucuoğlu, Haluk; Yakut, Ahmet (2004-05-21)
Fragility functions are determined for low- and mid-rise ordinary concrete buildings. A hybrid approach is employed where building capacities are obtained from field data and their dynamic responses are calculated by response history analysis. Lateral stiffness, strength and deformation capacities of the sample buildings are determined by pushover analyses. Uncertainties in lateral stiffness, strength and damage limit states are expressed by using statistical distributions. The seismic deformation demands o...
Citation Formats
A. O. Yucel, H. I. Öztürk, and M. Güler, “Influence of warm mix additive on internal structure of dry process crumb rubber modified mixtures,” Journal of Cleaner Production, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85108008517&origin=inward.