Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Robust Attitude Estimation Using IMU-Only Measurements
Date
2021-01-01
Author
Candan, Batu
Söken, Halil Ersin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
346
views
0
downloads
Cite This
© 1963-2012 IEEE.This article proposes two novel covariance-tuning methods to form a robust Kalman filter (RKF) algorithm for attitude (i.e., roll and pitch) estimation using the measurements of only an inertial measurement unit (IMU). KF-based and complementary filtering (CF)-based approaches are the two common methods for solving the attitude estimation problem. Efficiency and optimality of the KF-based attitude filters are correlated with appropriate tuning of the covariance matrices. Manual tuning process is a difficult and time-consuming task. Specifically, the IMU-only attitude estimation filters are prone to the external accelerations unless their covariances are adapted to gain robustness. The proposed algorithms provide an adaptive method for tuning the measurement noise covariance such that they can accurately estimate the attitude in the two axes. The first method relies on a single tuning factor, whereas the second one tunes the covariance with different (multiple) factors for each measurement axis. The proposed methodologies are tested and compared with other existing filtering algorithms in the literature under different dynamical conditions and using real-world experimental datasets in order to validate their effectiveness. Results show that highly dynamic scenarios, especially the multiple tuning factor strategy, can increase the attitude estimation accuracy more than two-times compared to the competitive algorithms.
Subject Keywords
Attitude estimation
,
covariance tuning
,
inertial measurement unit (IMU)-only
,
robust Kalman filter (RKF)
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85113340028&origin=inward
https://hdl.handle.net/11511/91973
Journal
IEEE Transactions on Instrumentation and Measurement
DOI
https://doi.org/10.1109/tim.2021.3104042
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Design of attitude estimation algorithms for inertial sensors only measurement scenarios
Candan, Batu; Söken, Halil Ersin; Department of Aerospace Engineering (2022-3-24)
This thesis proposes four novel robust Kalman filter algorithms for attitude estimation using only the measurements of an inertial measurement unit. Efficiency and optimality of the Kalman filter based attitude filters are correlated with appropriate tuning of the covariance matrices. Manual tuning process is a difficult and time-consuming task. Specifically, the inertial measurement unit-only attitude estimation filters are prone to the external accelerations unless their covariances are adapted to gain ro...
Robust Kalman filtering with single and multiple scale factors for small satellite attitude estimation
Söken, Halil Ersin; Sakai, Shin-ichiro (Springer, 2015-11-01)
In case of normal operational conditions for a satellite, a conventional Kalman Filter gives sufficiently good attitude estimation results. On the other hand, when there is a fault in the measurements then the Kalman filter fails about providing the required accuracy and may even collapse by time. In this paper, a Robust Kalman filtering method is proposed for the attitude estimation problem. By using the proposed method both the Extended Kalman Filter and Unscented Kalman Filter are modified ...
Exact kalman filtering of respiratory motion
Çetinkaya, Mehmet; Erkmen, Aydan Müşerref (2018-10-01)
In this paper we propose a novel Exact Kalman Filter for state estimation of quasi-periodic signals such as respiratory motion. Nonlinear functions of interest are approximations as truncated Fourier series. Instead of relying on approximations provided by Extended Kalman Filter or Unscented Kalman Filter, our filter performs exact calculation of the mean and covariances of interest. We then compare, through simulations, the performance of our filter to the two. Our results show that the theoretically deriv...
GPS-Based Real-Time Orbit Determination of Low Earth Orbit Satellites Using Robust Unscented Kalman Filter
Karslıoğlu, Mahmut Onur; Erdogan, Eren; Pamuk, Onur (2017-11-01)
In this research, a novel algorithm for real-time orbit determination (RTOD) is presented using the robust unscented Kalman filter (RUKF) with global positioning system (GPS) group and phase ionospheric correction (GRAPHIC) observables. To increase the reliability of the solution, a robust approach is included in the UKF to cope with the bad, invalid, or degraded measurements leading to the divergence or inaccurate output of the filter. Robustness is provided by making the filter less sensitive to faulty me...
Compressed Representation of High Dimensional Channels using Deep Generative Networks
Doshi, Akash; Balevi, Eren; Andrews, Jeffrey G. (2020-05-01)
© 2020 IEEE.This paper proposes a novel compressed representation for high dimensional channel matrices obtained by optimization of the input to a deep generative network. Channel estimation using generative networks constrains the reconstructed channel to lie in the range of the generative model, which allows it to outperform conventional channel estimation techniques in the presence of limited number of pilots. It also eliminates the need for explicit knowledge of the sparsifying basis for mmWave multiple...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Candan and H. E. Söken, “Robust Attitude Estimation Using IMU-Only Measurements,”
IEEE Transactions on Instrumentation and Measurement
, vol. 70, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85113340028&origin=inward.