Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Laser Crystallization of Amorphous Ge Thin Films via a Nanosecond Pulsed Infrared Laser
Date
2021-08-01
Author
Korkut, Ceren
Cinar, Kamil
Kabacelik, Ismail
Turan, Raşit
Kulakci, Mustafa
Bek, Alpan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
185
views
0
downloads
Cite This
Understanding the dynamics of the laser crystallization (LC) process of Ge thin films by nanosecond (ns) pulsed infrared (IR) lasers is important for producing homogeneous, crack-free crystalline device-grade films for use in thin-film transistors, photo-detectors, particle detectors, and photovoltaic applications. Our motivation is to describe a ns IR laser-based crystallization process of Ge by implementing suitable parameters to fabricate thin-film devices. Our LC technique was applied to crystallize thin amorphous Ge (a-Ge) films with thicknesses suitable for device applications. The LC process was applied to a 300 nm-thick a-Ge thin film utilizing a 200 ns pulsed IR laser with a wavelength of 1064 nm. Electron-beam-evaporation-deposited a-Ge on glass substrates were subject to successive ns laser pulses with a line focus. The crystallinity of the polycrystalline Ge (pc-Ge) films was evaluated by Raman spectroscopy, optical microscopy, and electron backscatter diffraction (EBSD). LC-Ge exhibited a Raman peak of around 300 cm(-1), confirming successful crystallization of a-Ge. pc-Ge domain sizes exceeding several tens of micrometers were observed in EBSD scans. LC of a-Ge minimizes the thermal energy budget of processing and provides flexibility to locally crystallize the film. Our work is the first demonstration of the LC of a-Ge thin films, resulting in domain sizes exceeding tens of micrometers via a ns pulsed IR laser.
URI
https://hdl.handle.net/11511/92018
Journal
CRYSTAL GROWTH & DESIGN
DOI
https://doi.org/10.1021/acs.cgd.1c00470
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
PHOTO-CARRIER DYNAMICS OF BLENDED AND MULTI-LAYERED FILMS OF ZINC PHTHALOCYANINE AND C-60 MEASURED BY TIME-RESOLVED TERAHERTZ SPECTROSCOPY
Melinger, Joseph S.; Lane, Paul; Esentürk, Okan; Heilweil, Edwin (2010-06-25)
We present a study of photo-induced carrier dynamics in organic thin films that contain zinc phthalocyanine (ZnPc) and buckminsterfullerene (C-60) investigated by ultrafast time resolved terahertz spectroscopy (TRTS). We compare two classes of films: 1) blend films of ZnPc and C-60 prepared by co-evaporation, and 2) superlattice films from alternating neat layers of ZnPc and C-60, where the individual layer varies in thickness between 2 nm and 40 nm. These films are model structures for the charge generatio...
Mechanical behaviour of Al2O3-ZrO2 minicomposite reinforced glass matrix optomechanical composite
Dericioğlu, Arcan Fehmi (Informa UK Limited, 2003-08-01)
To understand the effect of a 'mesh-structured reinforcement' on the optical and mechanical properties of optomechanical composites, a unidirectional Al2O3 fibre-ZrO2 matrix minicomposite reinforced glass matrix optomechanical composite has been fabricated. By regular alignment of the minicomposites in the glass matrix as part of the 'mesh structure' a high degree of optical transparency is obtained in the composite; this transparency is proportional to its 'optical window' regions. The mesh structured rein...
Heat-damage assessment of carbon-fiber-reinforced polymer composites by diffuse reflectance infrared spectroscopy
Dara, IH; Ankara, A; Akovali, G; Suzer, S (2005-05-15)
Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was used to assess the effects of heat damage on carbon-fiber-reinforced polymer composites. Moisture-saturated graphite-epoxy laminates with a quasi-isotropic lay-up were heat-damaged above their upper service temperatures. The loss of matrix-dominated mechanical properties due to heat exposure was investigated in the laboratory under environmental testing conditions with mechanical tests, ultrasonic C-scanning, and DRIFT spectroscopy. The...
3D-graphene-laser patterned p-type silicon Schottky diode
Orhan, Elif Oz; Efil, Esra; Bayram, Ozkan; Kaymak, Nuriye; Berberoğlu, Halil; Candemir, Ozun; Pavlov, Ihor; Ocak, Sema Bilge (Elsevier BV, 2021-01-01)
© 2020 Elsevier LtdThe influence of the laser patterning (LP) process on the quality of graphene (Gr) film and Schottky diode characteristics was researched in this study. First of all, p-type silicon (Si) was patterned by homemade femtosecond laser source. To compare the resulting effect, non-patterned n-Si and p-Si were used as substrates. To achieve vertically oriented three-dimensional (3D) Gr nanosheets (VGNs) onto the laser patterned p-type Si, non-patterned n-Si, and p-Si substrates, we used Radio-Fr...
Simulation of thermal, mechanical and optical behavior of yag ceramics with increasing Nd3+ concentration under lasing conditions.
Kenar, Necmettin; Öke, Gülay; Department of Physics (2007)
Two-dimensional thermal, mechanical and optical simulations are carried out to investigate the effect of Nd3+ concentration on thermal, mechanical and optical behavior of Nd:YAG ceramic laser materials under continuous wave laser operation. In the analyses, rods are pumped longitudinally with laser diodes, in three, six, nine and twelve fold structures. Rods having diameters of 3 and 6 mm are pumped with 808 nm and 885 nm sources separately having Nd+3 concentrations of 0.6, 1, 2, 3, 4 and 6 at. %. Total ab...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Korkut, K. Cinar, I. Kabacelik, R. Turan, M. Kulakci, and A. Bek, “Laser Crystallization of Amorphous Ge Thin Films via a Nanosecond Pulsed Infrared Laser,”
CRYSTAL GROWTH & DESIGN
, vol. 21, no. 8, pp. 4632–4639, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92018.