Polybenzimidazole-modified carbon nanotubes as a support material for platinum-based high-temperature proton exchange membrane fuel cell electrocatalysts

Eren, Enis Oguzhan
Özkan, Necati
We fabricate polybenzimidazole (PBI) wrapped carbon nanotubes (MWCNTs) as support material for platinum-based fuel cell electrocatalyst. With the aid of microwave-assisted polyol reduction, we obtain very fine platinum (Pt) nanoparticles on PBI/MWCNT support while reducing the amount of Pt waste during synthesis. Cyclic voltammetry (CV) concludes that Pt-PBI/MWCNT has 43.0 m(2) g(-1) of electrochemically active surface area (ECSA) to catalyze hydrogen oxidation. Furthermore, after the 1000th cycle, Pt-PBI/MWCNT preserves almost 80% of its maximum ECSA, meaning that Pt-PBI/MWCNT is much more durable than the Pt/MWCNT and commercial Pt/C. High-temperature proton exchange membrane fuel cell (HT-PEMFC) performance tests are conducted under H-2/Air conditions at the temperatures ranging from 150 degrees C to 180 degrees C. Nevertheless, tests conclude that the maximum power density values of the Pt-PBI/MWCNT are found inferior to the Pt/C at all temperatures (e.g., 47 vs. 62 mW cm(-2) at 180 degrees C), suggesting that some balance between durability and performance has to be taken into consideration. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.


Single- and multi-walled carbon nanotubes for solar cell applications
Obaidullah, Madina; Esat, Volkan; Sabah, Cumali (2018-08-20)
Emerging nanotechnologies have revealed carbon nanotubes (CNTs) as one of the best materials with immense potential. Considering the outstanding physical, mechanical, electrochemical, thermal, and optoelectronic properties of CNTs, extensive studies have been reported assessing their applications in several disciplines. This paper presents a broad review of the studies in the literature that address the contribution of CNTs in terms of their applications as different parts of solar cells such as photoelectr...
Coaxial silver nanowire network core molybdenum oxide shell supercapacitor electrodes
Yuksel, Recep; Coskun, Sahin; Ünalan, Hüsnü Emrah (Elsevier BV, 2016-03-01)
We present a new hybrid material composed of molybdenum (IV) oxide (MoO2) shell on highly conducting silver nanowire (Ag NW) core in the network form for the realization of coaxial Ag NW/MoO2 nanocomposite supercapacitor electrodes. Ag NWs were simply spray coated onto glass substrates to form conductive networks and conformal MoO2 layer was electrodeposited onto the Ag NW network to create binder-free coaxial supercapacitor electrodes. Combination of Ag NWs and pseudocapacitive MoO2 generated an enhanced e...
Titanium coverage on a single-wall carbon nanotube: Molecular dynamics simulations
Oymak, H; Erkoç, Şakir (2003-09-12)
The minimum energy structures of titanium covered finite-length C(8,0) singlewall carbon nanotubes (SWNT) have been investigated. We first parameterized an empirical potential energy function (PEF) for the CTi system. The PEF used in the calculations includes two- and three-body atomic interactions. Then, performing molecular dynamics simulations, we obtained the minimum-energy configurations for titanium covered SWNTs. The reported configurations include low and high coverage of Ti on SWNTs. We saw that on...
Adsorption of RuSex (x=1-5) cluster on Se-doped graphene: First principle calculations
AKTÜRK, OLCAY ÜZENGİ; Tomak, Mehmet (2015-08-30)
We have investigated the adsorption of RuSex (x =1-5) cluster on Se-doped graphene. The change of the adsorption energy with the number of Se atoms and magnetization values are investigated. Electronic properties of adsorption of RuSex (x =1-5) cluster on Se-doped graphene are investigated. The highest adsorption energy belongs to RuSe adsorbate. The biggest magnetization value belongs to RuSe2 adsorbate. This adsorbate makes the substrate half metallic. This property is important in electronic device appli...
Tunable Graphene Integrated Perfect Metamaterial Absorber for Energy Harvesting and Visible Light Communication
Sabah, Cumali (2018-02-09)
Tunable graphene integrated metamaterial absorber is proposed for energy harvesting and visible light communication. The structure provides unity absorption in the visible spectrum in which it can be used perfect absorber for energy harvesting. In addition, it also provides tunability because of the graphene conductivity to be used as photoconductive or thermal switch for visible light communication.
Citation Formats
E. O. Eren, N. Özkan, and Y. DEVRİM, “Polybenzimidazole-modified carbon nanotubes as a support material for platinum-based high-temperature proton exchange membrane fuel cell electrocatalysts,” INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 46, no. 57, pp. 29556–29567, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92026.