Rokhlin's Question and Quotients of Real Algebraic Surfaces by the Complex Conjugation

Complex algebraic surfaces defined over ℝ are considered. Local and global topological properties of their quotients by the complex conjugation are discussed. Bibliography: 9 titles.
Journal of Mathematical Sciences


Inequalities for harmonic functions on spheroids and their applications
Zahariuta, V (2001-06-01)
Hadamard-type interpolational inequalities for norms of harmonic functions are studied for confocal prolate and oblate spheroids. It is shown that the optimal level domains in such inequalities may be non-spheroidal. Moreover, in contrary with the case of analytic functions, there is an unremovable gap between the corresponding optimal level domains for inner and outer versions of Hadamard-type inequalities for harmonic functions. These results are based on some special asymptotical formulas for associated ...
On homology of real algebraic varieties
Ozan, Yıldıray (American Mathematical Society (AMS), 2001-01-01)
Let R be a commutative ring with unity and X an R-oriented compact nonsingular real algebraic variety of dimension n. If i : X --> X-C is any nonsingular complexification of X, then the kernel, which we will denote by KHk(X, R), of the induced homomorphism i(*) : H-k(X, R) --> H-k(X-C, R) is independent of the complexification. In this work, we study KHk(X, R) and give some of its applications.
Pseudospin and spin symmetry in Dirac-Morse problem with a tensor potential
AYDOĞDU, OKTAY; Sever, Ramazan (Elsevier BV, 2011-09-14)
Under the conditions of the pseudospin and spin symmetry, approximate analytical solutions of the Dirac-Morse problem with Coulomb-like tensor potential are presented. The energy eigenvalue equations are found and corresponding radial wave functions are obtained in terms of confluent hypergeometric functions. The energy eigenvalues are calculated numerically in the absence and presence of the tensor potential. We also investigate the contribution of the potential parameters to the energy splitting of the ps...
Finite rigid sets in curve complexes of non-orientable surfaces
Ilbıra, Sabahattin; Korkmaz, Mustafa; Department of Mathematics (2017)
A finite rigid set in a curve complex of a surface is a subcomplex such that every locally injective simplicial map defined on this subcomplex into the curve complex is induced from an automorphism of curve complex. In this thesisi we find finite rigid sets in the curve complexes of connected, non-orientable surfaces of genus g with n holes, where g+n neq 4. 
Geometrization of the Lax pair tensors
Baleanu, D; Baskal, S (2000-08-10)
The tensorial form of the Lax pair equations are given in a compact and geometrically transparent form in the presence of Cartan's torsion tensor. Three-dimensional space-times admitting Lax tensors are analyzed in detail. Solutions to Lax tensor equations include interesting examples as separable coordinates and the Toda lattice.
Citation Formats
S. Finashin, “Rokhlin’s Question and Quotients of Real Algebraic Surfaces by the Complex Conjugation,” Journal of Mathematical Sciences, vol. 113, pp. 915–918, 2003, Accessed: 00, 2021. [Online]. Available: