The gravitational effect on induced charge density for an obliquely rotating neutron start

1999-11-01
De Paolis, F
Qadir, A
Tarman, Işık Hakan
The effect on the induced charge density of the gravitational field of a rotating neutron star with its magnetic axis inclined with respect to the rotational axis is investigated. While gravitation increases the charge density the obliquity reduces it.
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS

Suggestions

The effect of rotation, up to second order, on the oscillation frequencies of some delta-scuti stars
Doğan, Gülnur; Kırbıyık, Halil; Department of Physics (2007)
In this work, the effect of rotation on the oscillation frequencies of some radially and nonradially oscillating Delta-Scuti stars have been explored. Rotation has been considered as a perturbation and treated up to the second order. Series of evolutionary models have been calculated for the oscillating stars in question and compared with the observational parameters. Three stars are considered: V350 Peg with no rotation, CC And with a rotational velocity Vsini=20 km/s, and BS Tuc with Vsini=130 km/s. We fi...
THE RESPONSE OF INFINITE PERIODIC BEAMS TO POINT HARMONIC FORCES - A FLEXURAL WAVE ANALYSIS
MEAD, DJ; Yaman, Yavuz (1991-02-08)
An exact analysis is presented of the vibration response of an infinite beam on periodic supports, subjected to a transverse harmonic point force. The supports must all be the same and can be simply supported or be generally linear with elastic, inertial and dissipative properties. The total response is found as the sum of the flexural wave fields generated by the applied force and the infinite number of support reaction forces and moments. The concept of phased arrays of forces and moments is used to sum t...
The evolution of the magnetic moment in a corrugated magnetic field
Demokan, O; Mirnov, VV (1997-09-01)
In the first part, the equations of motion in a weakly corrugated, periodic magnetic field are linearized and solved by using paraxial approximation, to describe the model and the associated resonance condition. In the second part, the nonlinear evolution of the magnetic moment of resonant particles, in connection with their axial displacement is investigated analytically by using the multiple scale method. It is seen that the linear evolution is converted into a slow and periodic oscillation around the unp...
THE ENERGY LOCALIZATION PROBLEM AND THE RENORMALIZED VACUUM ENERGY IN STATIC ROBERTSON-WALKER UNIVERSES
BAYM, SS (Springer Science and Business Media LLC, 1994-10-01)
We calculate the renormalized quantum vacuum energy inside a spherical boundary for the massless conformal scalar field in curved background Robertson-Walker geometry. We use the mode sum method with an exponential cuttoff. In our calculations we do not make assumptions about the exterior geometry or the global topology of the universe.
The quantum centripetal force on a free particle confined to the surface of a sphere and a cylinder
Shikakhwa, M. S. (2019-04-01)
The momentum operator for a spin-less particle when confined to a 2D surface embedded into 3D space acquires a geometrical component proportional to the mean curvature that renders it Hermitian. As a consequence, the quantum force operator for a particle confined to spherical and cylindrical surfaces, and free otherwise, derived by applying the Heisenberg equation of motion is found to have an apparently no-radial component in addition to the standard classical radial centripetal force. This component which...
Citation Formats
F. De Paolis, A. Qadir, and I. H. Tarman, “The gravitational effect on induced charge density for an obliquely rotating neutron start,” NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, vol. 114, no. 11, pp. 1281–1286, 1999, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92773.