DEVELOPMENT OF STRENGTH REDUCTION FACTORS FOR PERFORMANCE-BASED SEISMIC DESIGN OF BRIDGES IN FAR-FAULT SEISMIC REGIONS

2021-9
Rabaia, Tareq Z. S.
In this thesis, a methodology to develop strength reduction factors for performance-based seismic design of bridges in far-fault seismic regions is presented. The presented methodology is mainly based on performing linear 5%-damped response spectrum analyses (RSA) and nonlinear time history analyses (NTHA) of bridge piers modeled as single degree of freedom (SDOF) systems. Bridge piers of both circular and rectangular sections are analyzed for wide ranges of various design parameters considering several substructure-superstructure connections. Subsequently, a set of strength reduction factor (R-factor) equations derived by performing parametric linear regression analyses on the data resulted from the conducted structural analyses is proposed. The proposed R-factor equations are formulated in terms of the design parameters that significantly affect R-factor, and the maximum displacement ductility obtained from the NTHA considering various failure modes such as shear, shear-flexural, and flexural failure modes. Moreover, other equations to estimate the yield curvature, ultimate curvature, and yield moment capacities of bridge piers are proposed. Such equations that could be used to estimate the design displacement and flexural strength capacity of piers in the performance-based seismic design of bridges. Based on the derived equations in this thesis, a new performance-based seismic design procedure for bridge structures that mainly depends on R-factor is proposed. Finally, the implementation of the proposed design procedure is explained via design examples of bridge structures.

Suggestions

Estimation of lining thickness around circular shafts
Ozturk, H; Unal, E (2001-06-22)
In this paper, the broken zone developing, around a circular mine shafts and lining pressure is estimated by integrating the results of numerical analysis and the "rock-load height" equation derived from empirical analysis. During numerical modelling studies, the computer program FLAC(2D) was utilized. In order to estimate equivalent Mohr failure Envelope from the generalised Hoek Brown failure criterion, a new FISH function was written within FLAC(2D). Parametric studies were carried out by considering mRM...
Estimation of Length Limits for Integral Bridges Built on Clay
Dicleli, Murat (2004-11-01)
In this paper, the maximum length limits for integral bridges built on clay are determined as a function of the ability of steel H-piles supporting the abutments to sustain thermal-induced cyclic displacements and the flexural capacity of the abutment. First, H-pile sections that can accommodate large plastic deformations are determined considering their local buckling instability. Then, a low-cycle fatigue damage model is used to determine the maximum cyclic deformations that such piles can sustain. Next, ...
An improvement to linear-elastic procedures for seismic performance assessment
Gunay, Mehmet Selim; Sucuoğlu, Haluk (Wiley, 2010-07-10)
An improved linear-elastic analysis procedure is developed in this paper as a simple approximate method for displacement-based seismic assessment of the existing buildings. The procedure is mainly based on reducing the stiffness of structural members that are expected to respond in the inelastic range in a single global iteration step. Modal spectral displacement demands are determined from the equal displacement rule. Response predictions obtained from the proposed procedure are evaluated comparatively by ...
Analytical study on seismic retrofitting of reinforced concrete buildings using steel braces with shear link
Durucan, Cengizhan; Dicleli, Murat (2010-10-01)
This paper is focused on a proposed seismic retrofitting system (PRS) configured to upgrade the performance of seismically vulnerable reinforced concrete (RC) buildings. The PRS is composed of a rectangular steel housing frame with chevron braces and a yielding shear link connected between the braces and the frame. The retrofitting system is installed within the bays of an RC building frame to enhance the stiffness, strength and ductility of the structure. The PRS and a conventional retrofitting system usin...
Performance of seismic-isolated bridges with and without elastic-gap devices in near-fault zones
Dicleli, Murat (2008-05-01)
In this paper, the efficiency of providing elastic-gap devices (EGDs) to improve the performance of seismic- isolated bridges (SIBs) in near-fault (NF) zones is investigated. The device is primarily made of an assembly of circular rubber bearings and steel plates to provide additional elastic stiffness to the SIB upon closure of a gap. The EDG is intended to function at two performance levels under service and maximum considered design level (MCDL) NF earthquakes to reduce isolator displacements while keepi...
Citation Formats
T. Z. S. Rabaia, “DEVELOPMENT OF STRENGTH REDUCTION FACTORS FOR PERFORMANCE-BASED SEISMIC DESIGN OF BRIDGES IN FAR-FAULT SEISMIC REGIONS,” M.S. - Master of Science, Middle East Technical University, 2021.