ZnO quantum dots-graphene composites: Formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye

2016-04-01
Tayyebi, Ahmad
Outokesh, Mohammad
Tayebi, Meysam
Shafikhani, Azizollah
Şengör, Sema Sevinç
The current study demonstrates homogenous decorating of zinc oxide quantum dots (QDs) onto graphene oxide (GO) surface via simple chemical method. The AFM image exhibited that the prepared graphene was 0.8 nm thick and hence practically monolayer. Average size of the ZnO QDs was estimated by transmission electron microscopy around 3 nm. Instrumental and chemical analyses demonstrated formation of a strong bond between ZnO QDs and GO, through C-O-Zn and C-Zn bridges. The UV-visible spectra displayed that the introduction of graphene sheets to ZnO QDs resulted in higher absorption intensity of UV as well as widening of adsorption window toward visible light for ZnO-Graphene due to chemical bond between ZnO QDS and graphene surface. Results showed that adding of graphene up to 30% can improve resistance of ZnO against acids however for keeping the activity of catalyst, the recommended pH is near neutral (pH approximate to 6-7.2). In addition, the presence of graphene on the surface of the ZnO could significantly suppress the photocorrosion effect. The ZnO-Graphene hybrids indicated enhanced photocatalytic activity for degradation of methyl orange (MO) with the following order: ZnO-5% Graphene > ZnO-10% Graphene > ZnO QDs > ZnO30%-Graphene. This enhancement of photocatalytic activity may be attributed to the extended absorption of visible light, reducing of electronehole recombination rate, and adsorption of MO molecules onto the huge surface area of graphene, where they are kept at vicinity of ZnO for decomposition. (C) 2015 Elsevier B.V. All rights reserved.
JOURNAL OF ALLOYS AND COMPOUNDS

Suggestions

ZnO nanowires grown on SOI CMOS substrate for ethanol sensing
Santra, S.; Guha, P. K.; Ali, S. Z.; Hiralal, P.; Ünalan, Hüsnü Emrah; Covington, J. A.; Amaratunga, G. A. J.; Milne, W. I.; Gardner, J. W.; Udrea, F. (2010-04-29)
This paper reports on the integration of zinc oxide nanowires (ZnO NWs) with a silicon on insulator (SOI) CMOS (complementary metal oxide semiconductor) micro-hotplate for use as an alcohol sensor. The micro-hotplates consist of a silicon resistive micro-heater embedded within a membrane (composed of silicon oxide and silicon nitride, supported on a silicon substrate) and gold bump bonded aluminum electrodes that are used to make an ohmic contact with the sensing material. ZnO NWs were grown by a simple, lo...
ZnO Nanorods as Antireflective Coatings for Industrial-Scale Single-Crystalline Silicon Solar Cells
AURANG, Pantea; Demircioglu, Olgu; ES, FIRAT; Turan, Raşit; Ünalan, Hüsnü Emrah (Wiley, 2013-04-01)
In this work, both planar and textured, industrial scale (156mmx156mm) single-crystalline silicon (Si) solar cells have been fabricated using zinc oxide (ZnO) nanorods as antireflection coating (ARC). ZnO nanorods were grown in a few minutes via hydrothermal method within a commercially available microwave oven. Relative improvement in excess of 65% in the reflectivity was observed for both planar and textured Si surfaces. Through ZnO nanorods, effective lifetime (eff) measurements were presented to investi...
Zinc Oxide Nanowire Decorated Single-Use Electrodes for Electrochemical DNA Detection
Congur, Gulsah; Ates, Elif Selen; Afal, Aysegul; ERDEM GÜRSAN, KADRİYE ARZUM; Erdem, Arzum (2015-02-01)
The surfaces of pencil graphite electrodes (PGEs) were decorated with zinc oxide nanowires (ZnO NWs) for the electrochemical detection of nucleic acids. ZnO NWs were synthesized through simple hydrothermal method. PGEs decorated with ZnO NWs (ZnO NW/PGEs) were electrochemically characterized through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) following morphological characterization through transmission (TEM) and scanning electron microscopy (SEM). Enhanced sensor response obtai...
Zinc Oxide Nanowire Photodetectors with Single-Walled Carbon Nanotube Thin-Film Electrodes
Ates, Elif Selen; Kucukyildiz, Seyda; Ünalan, Hüsnü Emrah (2012-10-01)
In this study, transparent and flexible zinc oxide (ZnO) nanowire ultraviolet (UV) photodetectors prepared via a solution-based method in which single-walled carbon nanotube (SWNT) thin films were used as transparent electrodes are reported. The photoresponse current was found to be in proportion with the ZnO nanowire density, and the nanowire density could be tuned to increase the photocurrent by a factor of 300. The decay time for the fabricated photodetectors was found to be as low as 16 s. This study su...
X-Doped (X = C, N, F, P) ZnO Sheet: Density Functional Theory Calculations
Kökten, Hatice (2015-03-01)
The structural and electronic properties of honeycomb-like zinc oxide sheet has been investigated by performing density functional theory calculations. Carbon, Nitrogen, Fluorine and Phosphorus atom doped form of ZnO sheets have been considered for calculations as well as their defect free forms. All systems under consideration have been fully optimized. The substitution atoms have been replaced on the oxygen site in the neutral charge state. All the calculations have been repeated for different cell sizes....
Citation Formats
A. Tayyebi, M. Outokesh, M. Tayebi, A. Shafikhani, and S. S. Şengör, “ZnO quantum dots-graphene composites: Formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye,” JOURNAL OF ALLOYS AND COMPOUNDS, vol. 663, pp. 738–749, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/93870.