Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Bounds for the rank of the finite part of operator K-theory
Download
index.pdf
Date
2020-01-01
Author
Samurkaş, Süleyman Kağan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
74
views
17
downloads
Cite This
We derive a lower and an upper bound for the rank of the finite part of operator K-theory groups of maximal and reduced C*-algebras of finitely generated groups. The lower bound is based on the amount of polynomially growing conjugacy classes of finite order elements in the group. The upper bound is based on the amount of torsion elements in the group. We use the lower bound to give lower bounds for the structure group S(M) and the group of positive scalar curvature metrics P (M) for an oriented manifold M.
URI
https://hdl.handle.net/11511/93927
Journal
JOURNAL OF NONCOMMUTATIVE GEOMETRY
DOI
https://doi.org/10.4171/jncg/333
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
On a Fitting length conjecture without the coprimeness condition
Ercan, Gülin (Springer Science and Business Media LLC, 2012-08-01)
Let A be a finite nilpotent group acting fixed point freely by automorphisms on the finite solvable group G. It is conjectured that the Fitting length of G is bounded by the number of primes dividing the order of A, counted with multiplicities. The main result of this paper shows that the conjecture is true in the case where A is cyclic of order p (n) q, for prime numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.
On local finiteness of periodic residually finite groups
Kuzucouoglu, M; Shumyatsky, P (2002-10-01)
Let G be a periodic residually finite group containing a nilpotent subgroup A such that C-G (A) is finite. We show that if [A, A(g)] is finite for any g is an element of G, then G is locally finite.
Direct limits of monomial groups
Kuzucuoğlu, Mahmut (null; 2017-01-23)
We give the construction of homogenous monomial groups as a direct limit of monomial groups. Then we find the structure of the centralizers of elements and conjugacy of two elements in homogenous monomial groups. Moreover isomorphisms of two homogenous monomial groups will be discussed.
On the influence of fixed point free nilpotent automorphism groups
Ercan, Gülin (2017-12-01)
A finite group FH is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup F with a nontrivial complement H such that for all nonidentity elements . Let FH be a Frobenius-like group with complement H of prime order such that is of prime order. Suppose that FH acts on a finite group G by automorphisms where in such a way that In the present paper we prove that the Fitting series of coincides with the intersections of with the Fitting series of G, and the nilpotent length of G exceeds the...
The classical involution theorem for groups of finite Morley rank
Berkman, A (Elsevier BV, 2001-09-15)
This paper gives a partial answer to the Cherlin-Zil'ber Conjecture, which states that every infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field. The classification of the generic case of tame groups of odd type follows from the main result of this work, which is an analogue of Aschbacher's Classical Involution Theorem for finite simple groups. (C) 2001 Academic Press.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. K. Samurkaş, “Bounds for the rank of the finite part of operator K-theory,”
JOURNAL OF NONCOMMUTATIVE GEOMETRY
, vol. 14, no. 2, pp. 413–439, 2020, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/93927.