Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Thermal rectification behaviour of some small quantum systems
Download
Selahittin Atılay Zervent Thesis 10.09.2021.pdf
Date
2021-9-10
Author
Zervent, Selahittin Atılay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
304
views
263
downloads
Cite This
Thermal rectification behaviors for some small quantum systems are studied by using the Lindblad master equation. From the underlying Hamiltonian dynamics of the composite quantum systems consisting of small quantum systems and reservoirs, Lindblad master equations are obtained by using certain approximations. Optimum operation parameters are determined for a single two-level and two two-level quantum systems. It is shown that there is no thermal rectification behavior when the contact between two reservoirs is a single harmonic oscillator or two harmonic oscillators Lindblad master equation and Hamiltonian dynamics is used separately to show that the zero rectification is due to the linearity of the dynamics of the oscillators and it is not the result of the approximations made when the Lindblad master equation is obtained.
Subject Keywords
Lindblad master equation
,
Thermal rectification
,
Thermal diode
,
Ising coupling
,
Heisenberg coupling
URI
https://hdl.handle.net/11511/94271
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Thermal characterisation of quantum cascade lasers with Fabry Perot modes
Gundogdu, Sinan; Pisheh, Hadi Sedaghat; Demir, Abdullah; Guenoven, Mete; AYDINLI, ATİLLA; Sirtori, Carlo (2018-04-26)
Quantum cascade lasers are coherent light sources that rely on intrersubband transition in periodic semiconductor quantum well structures. They operate at frequencies from mid-infrared to terahertz. In cases of long wavelength and typical low thermal conductivity of the active region, temperature rise in the active region during operation is a major concern. Thermal conductivity of QCL epi-layers differ significantly from the values of bulk semiconductors and measurement of the thermal conductivity of epi-l...
Spontaneous Lorentz violation: the case of infrared QED
Balachandran, A. P.; Kürkcüoğlu, Seçkin; de Queiroz, A. R.; VAİDYA, SACHİN (2015-02-24)
It is by now clear that the infrared sector of quantum electrodynamics (QED) has an intriguingly complex structure. Based on earlier pioneering work on this subject, two of us recently proposed a simple modification of QED by constructing a generalization of the U(1) charge group of QED to the "Sky" group incorporating the well-known spontaneous Lorentz violation due to infrared photons, but still compatible in particular with locality (Balachandran and Vaidya, Eur Phys J Plus 128:118, 2013). It was shown t...
Transient behavior of a cylindrical adsorbent bed during the adsorption process
SOLMUŞ, İsmail; Yamali, Cemil; Yıldırım, Cihan; BİLEN, Kadir (2015-03-15)
A transient two dimensional local thermal non-equilibrium model is developed to investigate the influences of heat transfer and operating parameters on the dynamic behavior of a cylindrical adsorbent bed during the adsorption process. Local volume averaging method is used to drive the macro scale governing conservation equations from the micro scale ones. In the model, linear driving force model and Darcy's equation are considered to account for the resistances to internal and external mass transfer, respec...
Nonlinear optical properties of a Poschl-Teller quantum well under electric and magnetic fields
AYTEKİN, ÖZLEM; Turgut, Sadi; Tomak, Mehmet (2012-04-01)
The nonlinear optical properties of a Poschl-Teller Quantum well (PTQW) under electric and magnetic fields are studied. The salient feature of this potential is its flexibility. It can be made asymmetrical by a proper choice of its two parameters. Optical rectification, second and third-harmonic generation susceptibilities are calculated using the density matrix formalism. We study the effects of quantum confinement, electric and magnetic fields on all of these optical coefficients.
Singularly perturbed diffusion-advection-reaction processes on extremely large three-dimensional curvilinear networks with a periodic microstructure -- efficient solution strategies based on homogenization theory
Kropat, Erik; Meyer-Nieberg, Silja; Weber, Gerhard-Wilhelm (American Institute of Mathematical Sciences (AIMS), 2016-8)
Boundary value problems on large periodic networks arise in many applications such as soil mechanics in geophysics or the analysis of photonic crystals in nanotechnology. As a model example, singularly perturbed elliptic differential equations of second order are addressed. Typically, the length of periodicity is very small compared to the size of the covered region. The overall complexity of the networks raises serious problems on the computational side. The high density of the graph, the huge number of ed...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. A. Zervent, “Thermal rectification behaviour of some small quantum systems,” M.S. - Master of Science, Middle East Technical University, 2021.