Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
3D Object Recognition by Geometric Hashing
Date
2009-01-01
Author
Eskizara, Omer
Akagündüz, Erdem
Ulusoy, İlkay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
234
views
0
downloads
Cite This
Using transform invariant 3D fatures obtained from a database of 3D range images, geometric hashing is applied for the purpose of 3D object recognition. Mean (H) and Gaussian (K) curvature values within a scale-space of the surface is used Since H and K values are used and a scale-space of the surface is constructed the method is independent of transformation and resolution. The method is tested on the Stuttgart 3D range image database [1].
URI
https://hdl.handle.net/11511/94340
Conference Name
IEEE 17th Signal Processing and Communications Applications Conference
Collections
Graduate School of Informatics, Conference / Seminar
Suggestions
OpenMETU
Core
3d geometric hashing using transform invariant features
Eskizara, Ömer; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2009)
3D object recognition is performed by using geometric hashing where transformation and scale invariant 3D surface features are utilized. 3D features are extracted from object surfaces after a scale space search where size of each feature is also estimated. Scale space is constructed based on orientation invariant surface curvature values which classify each surface point's shape. Extracted features are grouped into triplets and orientation invariant descriptors are defined for each triplet. Each pose of eac...
3D object representation using transform and scale invariant 3D features
AKAGÜNDÜZ, Erdem; Ulusoy, İlkay (2007-10-21)
An algorithm is proposed for 3D object representation using generic 3D features which are transformation and scale invariant. Descriptive 3D features and their relations are used to construct a graphical model for the object which is later trained and then used for detection purposes. Descriptive 3D features are the fundamental structures which are extracted from the surface of the 3D scanner output. This surface is described by mean and Gaussian curvature values at every data point at various scales and a ...
3D object recognition from range images using transform invariant object representation
AKAGÜNDÜZ, erdem; Ulusoy, İlkay (Institution of Engineering and Technology (IET), 2010-10-28)
3D object recognition is performed using a scale and orientation invariant feature extraction method and a scale and orientation invariant topological representation. 3D surfaces are represented by sparse, repeatable, informative and semantically meaningful 3D surface structures, which are called multiscale features. These features are extracted with their scale (metric size and resolution) using the classified scale-space of 3D surface curvatures. Triplets of these features are used to represent the surfac...
3D object recognition using scale space of curvatures
Akagündüz, Erdem; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2011)
In this thesis, a generic, scale and resolution invariant method to extract 3D features from 3D surfaces, is proposed. Features are extracted with their scale (metric size and resolution) from range images using scale-space of 3D surface curvatures. Different from previous scale-space approaches; connected components within the classified curvature scale-space are extracted as features. Furthermore, scales of features are extracted invariant of the metric size or the sampling of the range images. Geometric ...
E3D-D2D: EMBEDDING IN 3D, DETECTION IN 2D THROUGH PROJECTIVE INVARIANTS
Yasaroglu, Yagiz; Alatan, Abdullah Aydın (2014-10-30)
A novel watermarking method is presented in which the data embedded into a 3D model is extracted from an arbitrary 2D view by using a perspective projective invariant. The data is embedded into 3D positions of selected interest points on a 3D mesh. Determining the interest point modification vectors for ensuring watermark detection constitutes an important part of the proposed method. Different watermark embedding schemes based on optimization of the watermark function are implemented and evaluated. Another...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Eskizara, E. Akagündüz, and İ. Ulusoy, “3D Object Recognition by Geometric Hashing,” presented at the IEEE 17th Signal Processing and Communications Applications Conference, Antalya, Türkiye, 2009, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94340.