3d geometric hashing using transform invariant features

Download
2009
Eskizara, Ömer
3D object recognition is performed by using geometric hashing where transformation and scale invariant 3D surface features are utilized. 3D features are extracted from object surfaces after a scale space search where size of each feature is also estimated. Scale space is constructed based on orientation invariant surface curvature values which classify each surface point's shape. Extracted features are grouped into triplets and orientation invariant descriptors are defined for each triplet. Each pose of each object is indexed in a hash table using these triplets. For scale invariance matching, cosine similarity is applied for scale variant triple variables. Tests were performed on Stuttgart database where 66 poses of 42 objects are stored in the hash table during training and 258 poses of 42 objects are used during testing. %90.97 recognition rate is achieved.

Suggestions

3D object recognition from range images using transform invariant object representation
AKAGÜNDÜZ, erdem; Ulusoy, İlkay (Institution of Engineering and Technology (IET), 2010-10-28)
3D object recognition is performed using a scale and orientation invariant feature extraction method and a scale and orientation invariant topological representation. 3D surfaces are represented by sparse, repeatable, informative and semantically meaningful 3D surface structures, which are called multiscale features. These features are extracted with their scale (metric size and resolution) using the classified scale-space of 3D surface curvatures. Triplets of these features are used to represent the surfac...
3D face reconstruction using stereo images and structured light
Öztürk, Ahmet Oğuz; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2007)
Nowadays, 3D modelling of objects from multiple images is a topic that has gained great recognition and is widely used in various fields. Recently, lots of progress has been made in identification of people using 3D face models, which are usually reconstructed from multiple face images. In this thesis, a system including stereo cameras and structured light is built for the purpose of 3D modelling. The system outputs are 3D shapes of the face and also the texture information registered to this shape. Althoug...
3d face representation and recognition using spherical harmonics
Tunçer, Fahri; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2008)
In this study, a 3D face representation and recognition method based on spherical harmonics expansion is proposed. The input data to the method is range image of the face. This data is called 2.5 dimensional. Input faces are manually marked on the two eyes, nose and chin points. In two dimensions, using the marker points, the human face is modeled as two concentric half ellipses for the selection of region of interest. These marker points are also used in three dimensions to register the faces so that the n...
3D Object Recognition by Geometric Hashing
Eskizara, Omer; Akagündüz, Erdem; Ulusoy, İlkay (2009-01-01)
Using transform invariant 3D fatures obtained from a database of 3D range images, geometric hashing is applied for the purpose of 3D object recognition. Mean (H) and Gaussian (K) curvature values within a scale-space of the surface is used Since H and K values are used and a scale-space of the surface is constructed the method is independent of transformation and resolution. The method is tested on the Stuttgart 3D range image database [1].
Frequency invariant beamforming and its application to wideband direction of arrival estimation
Babataş, Eren; Candan, Çağatay; Department of Electrical and Electronics Engineering (2008)
In this thesis the direction of arrival estimation of wideband signals using frequency invariant beamforming method is examined. The difficulty with the direction of arrival estimation of wideband signals is that it is not possible to obtain a single covariance matrix valid for the whole frequency spectrum of the signal. There are various methods proposed in the literature to overcome this difficulty. The common aim of all the methods is to obtain a composite covariance matrix for the overall band of the si...
Citation Formats
Ö. Eskizara, “3d geometric hashing using transform invariant features,” M.S. - Master of Science, Middle East Technical University, 2009.