Enhancement of the Thermal Energy Storage Using Heat-Pipe-Assisted Phase Change Material

2021-10-01
Behi, Hamidreza
Behi, Mohammadreza
Ghanbarpour, Ali
Karimi, Danial
AZAD, ARYAN
Ghanbarpour, Morteza
Behnia, Masud
Usage of phase change materials' (PCMs) latent heat has been investigated as a promising method for thermal energy storage applications. However, one of the most common disadvantages of using latent heat thermal energy storage (LHTES) is the low thermal conductivity of PCMs. This issue affects the rate of energy storage (charging/discharging) in PCMs. Many researchers have proposed different methods to cope with this problem in thermal energy storage. In this paper, a tubular heat pipe as a super heat conductor to increase the charging/discharging rate was investigated. The temperature of PCM, liquid fraction observations, and charging and discharging rates are reported. Heat pipe effectiveness was defined and used to quantify the relative performance of heat pipe-assisted PCM storage systems. Both experimental and numerical investigations were performed to determine the efficiency of the system in thermal storage enhancement. The proposed system in the charging/discharging process significantly improved the energy transfer between a water bath and the PCM in the working temperature range of 50 & DEG;C to 70 & DEG;C.
ENERGIES

Suggestions

Experimental analysis of energy storage device using phase change material integrated with a milk storage system
Nıma, Bonyadı; Somek, Suleyman Kazım; C Cıhan, Ozalevlı; Baker, Derek Keıth; Tarı, İlker (null; 2015-08-12)
Phase change materials (PCMs) have the advantage of storing latent heat at constant temperature and can possess higher energy storage densities in comparison to materials storing sensible heat. Due to these features, latent heat Thermal Energy Storage (TES) devices using PCMs are widely used to store heat in thermal systems. The aim of this study is to experimentally investigate the performance of water PCM in an improved milk storage cooling cycle integrated with a TES device. In this prototype, water is u...
Numerical investigation of bubbling fluidized bed to be used as high temperature thermal energy storage
Hiçdurmaz, Serdar; Tarı, İlker; Department of Mechanical Engineering (2017)
A thermal energy storage unit designed to be used in a solid particle concentrated solar energy system is analysed with the help of a commercial Computational Fluid Dynamics tool. Hydrodynamics of the bubbling fluidized sand bed of which dimensions are 0.28 m x 1 m x 0.025 m to be used as direct contact heat exchanger are modelled and validated. Geldart B type particles with diameter of 275 micron and density of 2500 kg/m3 are used in modelling of bubbling fludized sand bed. Syamlal O’Brien drag model with ...
Implementation of metal-based microchannel heat exchangers in a microrefrigeration cycle, and numerical and experimental investigation of surface roughness effects on flow boiling
Jafari Khousheh Mehr, Rahim; Okutucu Özyurt, Hanife Tuba; Ünver, Hakkı Özgür; Department of Mechanical Engineering (2015)
A microscale vapor compression refrigeration cycle has been constructed for possible application in the thermal management of compact electronic components. The micro-evaporator and micro-condenser components have been fabricated using wire electron discharge machining and micromilling, respectively. Three microevaporators have been manufactured with different surface roughness for the experimental and numerical investigation of roughness effect on nucleate flow boiling in microchannels. In the numerical pa...
Enhancement of hydrogen storage capacity of multi-walled carbon nanotubes with palladium doping prepared through supercritical CO2 deposition method
ERÜNAL, EBRU; Ulusal, Fatma; ASLAN, MUSTAFA YASİN; GÜZEL, BİLGEHAN; Üner, Deniz (Elsevier BV, 2018-06-07)
Pd doped Multi-Walled Carbon Nanotubes were prepared via supercritical carbon dioxide deposition method in order to enhance the hydrogen uptake capacity of carbon nanotubes at ambient conditions. A new bipyridyl precursor that enables reduction at moderate conditions was used during preparation of the sample. Both XRD analyses and TEM images confirmed that average Pd nanoparticle size distribution was around 10 nm. Hydrogen adsorption and desorption experiments at room temperature with very low pressures (0...
Fabrication and characterization of photocrosslinked phase change materials by using conventional and terahertz spectroscopy techniques
Aytan, Emre; Aytekin, Yusuf Samet; Esentürk, Okan; KAHRAMAN, MEMET VEZİR (2019-12-01)
A series of novel photocrosslinked shape-stabilized phase change materials (PCMs) based on tetradecanol and lauric acid have been prepared by UV technique for the purpose of thermal energy storage applications. Both lauric acid and tetradecanol were reacted with glycidyl methacrylate to form acrylated structures for covalently integrate into polyurethane (PU) based UV matrix to prevent leakage problem. The heating process phase change enthalpy is measured between 9 and 77 J/g, and the freezing process phase...
Citation Formats
H. Behi et al., “Enhancement of the Thermal Energy Storage Using Heat-Pipe-Assisted Phase Change Material,” ENERGIES, vol. 14, no. 19, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94363.