A compact and modular scanning tunneling microscope

1992-01-01
Oral, Ahmet
Ellialtioglu, R.
A modular Scanning Tunneling Microscope has been constructed and sucessfully tested. The design is based on a magnetically driven sample positioner and single tube scanner. This design enables us to replace scanner and sample positioner modules easily in order to improve the performance of STM. Atomic resolution on graphite surface has been achieved in air with this microscope. -Authors
Doga, Turkish Journal of Physics

Suggestions

A Compact Electromagnetic Vibration Harvesting System with High Performance Interface Electronics
Rahimi, A.; Zorlu, O.; Muhtaroglu, A.; Külah, Haluk (2011-09-07)
A compact vibration-based electromagnetic (EM) energy harvesting system utilizing high performance interface electronics, has been presented. The energy harvester module consists of an AA-battery sized cylinder tube with an external coil winding, a fixed magnet at the bottom of the tube, and a free magnet inside. The transducer is able to operate at low external vibration frequencies between 9.5 and 12 Hz. The generated AC voltage is converted to DC using a custom rectifier circuit that utilizes a gate cros...
A simple single-mode fiber loss measurement scheme in the C-band based on fiber loop-cavity ringdown spectroscopy
Berberoglu, Halil; Altan, Hakan (Elsevier BV, 2014-04-15)
An extremely sensitive and simple fiber loop-cavity ringdown spectroscopy (FL-CRDS) setup has been designed based on a turn-key nanosecond pulse laser source operating at 1535 nm. The system sensitivity is demonstrated to be approximately 0.01 dB after extracting the characteristic macrobend loss curve of a standard single mode fiber (SMF-28). The experiment demonstrated that the oscillatory behavior in the rapid loss due to the increasing curvature could be seen for single turn bare fibers with radii of cu...
A low cost uncooled infrared microbolometer focal plane array using the CMOS n-well layer
Tezcan, DS; Eminoglu, S; Akar, OS; Akın, Tayfun (2001-01-25)
This paper reports a low-cost, 256-pixel uncooled infrared microbolometer focal plane array (FPA) implemented using a 0.8 mum CMOS process where the n-well layer is used as the active microbolometer material. The suspended n-well structure is obtained by simple front-end bulk etching of the fabricated CMOS dies, while the n-well region is protected from etching by electrochemical etch-stop technique within a TMAH solution. Electrical connections to the suspended n-well are obtained with polysilicon intercon...
A dielectrophoretic cell/particle separator fabricated by spiral channels and concentric gold electrodes
Yilmaz, G.; Çiftlik, A.T.; Külah, Haluk (2009-12-14)
This paper presents the design and implementation of a novel dielectrophoresis (DEP) system with spiral channels and concentric electrodes for high resolution cell separation applications. The device is fabricated with a 4 mask parylene process and the design is optimized in MATLAB Simulink reg to confine the operation. Tests with micro particles of different sizes are performed to show size-based separation by dielectrophoresis. Proposed device is also tested with K562 leukemia cell lines to prove that the...
Single layer graphene Hall sensors for scanning Hall probe microscopy (SHPM) in 3-300 K temperature range
Sonusen, S.; KARCI, ÖZGÜR; DEDE, MUNIR; Aksoy, S.; Oral, Ahmet (2014-07-30)
Graphene micro-Hall probes were developed for a scanning Hall probe microscope system and used for the direct magnetic imaging domains of demagnetized NdFeB permanent magnet for the first time. The Hall coefficient and minimum magnetic field resolution of graphene Hall probes at 1 kHz were found to be 0.18 Omega/G and 0.20 G/root Hz for a drive current of 3 mu A at room temperature in vacuum. The magnetic domains in NdFeB demagnetized magnet were observed at 300K, 126K and 3K successfully.
Citation Formats
A. Oral and R. Ellialtioglu, “A compact and modular scanning tunneling microscope,” Doga, Turkish Journal of Physics, vol. 16, no. 6, pp. 400–404, 1992, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0026440434&origin=inward.