Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Compact Electromagnetic Vibration Harvesting System with High Performance Interface Electronics
Download
10.1016.j.proeng.2011.12.053.pdf
Date
2011-09-07
Author
Rahimi, A.
Zorlu, O.
Muhtaroglu, A.
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
223
views
118
downloads
Cite This
A compact vibration-based electromagnetic (EM) energy harvesting system utilizing high performance interface electronics, has been presented. The energy harvester module consists of an AA-battery sized cylinder tube with an external coil winding, a fixed magnet at the bottom of the tube, and a free magnet inside. The transducer is able to operate at low external vibration frequencies between 9.5 and 12 Hz. The generated AC voltage is converted to DC using a custom rectifier circuit that utilizes a gate cross coupled (GCC) input stage. This decreases the effective threshold voltage of the utilized diodes, while increasing the DC output power delivered to the load. The autonomous system, composed of an EM energy harvester module and a 0.35 mu m CMOS IC, delivers 11.6 mu W power to a 41 mu A load at an external vibration frequency of 12 Hz. The volume of the total system is 4.5 cm(3), and the overall system power density is 2.6 mu W/cm(3).
Subject Keywords
Vibration-based Energy Harvesting System
,
Electromagnetic Power Generation
,
Gate-Cross-Coupled Rectification
URI
https://hdl.handle.net/11511/46080
DOI
https://doi.org/10.1016/j.proeng.2011.12.053
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
An electromagnetic energy harvesting system for low frequency applications with a passive interface ASIC in standard CMOS
Rahimi, Arian; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2012-12-01)
This paper presents a compact energy harvesting system, which consists of an electromagnetic (EM) generator converting ambient low frequency vibrations to DC voltage by using a highly efficient full-wave rectifier in a System-on-Package (Sop). Frequency Up-Conversion technique has been utilized by the in-house EM transducer to harvest energy from very low frequency vibrations (<5 Hz). The interface ASIC is a passive rectifier based on the boot-strap rectification (BSR) technique to decrease the effective th...
A vibration-based electromagnetic energy harvester system with highly efficient interface electronics
Rahimi, Arian; Zorlu, Özge; Muhtaroǧlu, Ali; Külah, Haluk (2011-09-01)
This paper presents a vibration-based electromagnetic (EM) energy harvester system utilizing novel and highly efficient interface electronics. The energy harvesting module up-converts the environmental low frequency vibrations for increased AC power output. The interface circuit employs a boot-strap technique to reduce the threshold voltage of the rectifiers further increasing the power conversion efficiency of the overall system. The complete system, composed of an energy harvester module, and a compact 0....
A Self-Powered and Efficient Rectifier for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2014-11-05)
This paper presents an interface circuit for efficient rectification of voltages from electromagnetic (EM) energy harvesters operating with very low vibration frequencies. The interface utilizes a dual-rail AC/DC doubler which benefits from the full cycle of the input AC voltage, and minimizes the forward bias voltage drop with an active diode structure. The active diodes are powered through an AC/DC quadrupler with diode connected (passive) transistors. The interface system has been validated to drive 22 m...
An efficient integrated interface electronics for electromagnetic energy harvesting from low voltage sources
Ulusan, Hasan; Gharehbaghi, Kaveh; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2013-12-01)
This paper presents a fully-integrated self-powered interface circuit for efficient rectification of the signals generated by vibration based low-voltage electromagnetic (EM) energy harvesters. The circuit utilizes an improved AC/DC doubler structure with active diodes to minimize the forward bias voltage drop for enhancing the rectifier efficiency. The comparators in the active diodes are powered internally by another passive AC/DC doubler with diode connected transistors. The performance is maximized thro...
A Vibration-Based Electromagnetic Energy Harvester Using Mechanical Frequency Up-Conversion Method
Zorlu, Ozge; Topal, Emre Tan; Külah, Haluk (2011-02-01)
This paper presents a new vibration-based electromagnetic energy harvester using a mechanical frequency up-conversion method for harvesting energy from external low-frequency vibrations within a range of 1-10 Hz. The structure consists of a magnet placed on a diaphragm, a polystyrene cantilever carrying a pick-up coil, and a mechanical barrier which converts low-frequency vibrations to a higher frequency, hence increasing the efficiency of the system. The tested structure proved to generate 88.6 mV and 544....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Rahimi, O. Zorlu, A. Muhtaroglu, and H. Külah, “A Compact Electromagnetic Vibration Harvesting System with High Performance Interface Electronics,” 2011, vol. 25, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46080.