Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Hybrid transparent conductive electrode structure for solar cell application
Date
2021-12-01
Author
Altuntepe, Ali
Olgar, Mehmet Ali
Erkan, Serkan
Hasret, Onur
Kececi, Ahmet Emin
Kokbudak, Gamze
TOMAKİN, MURAT
Seyhan, Ayse
Turan, Raşit
Zan, Recep
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
260
views
0
downloads
Cite This
This study draws on our experiences with graphene to perform a hybrid TCO structure composed of AZO and graphene. We first set out to enhance the electrical and optical properties of AZO to enable its use especially in the field of solar cell. Hence, in our study, we deposited various thicknesses of AZO thin films on glass substrates and transferred single layer graphene on them to realize the formation of hybrid TCO structure. Among the various AZO film thicknesses, the optimum one, 300 nm, was determined and then the graphene film was added on top of the AZO film. This hybrid structure was applied to the silicon based heterojunction solar cell with the idea of improving the cell performance. The cell performance fabricated using AZO film and AZO + graphene structure was analyzed using solar simulator. Our findings highlight the fact that the presence of graphene improved the cell efficiency by about 7%. Our research was further extended using ITO and ITO + graphene hybrid structure as TCO for silicon-based solar cell. We discovered that graphene incorporation increased the cell efficiency by almost 12% based on our results with ITO + graphene hybrid TCO structure on a similar cell. (c) 2021 Elsevier Ltd. All rights reserved.
URI
https://hdl.handle.net/11511/94516
Journal
RENEWABLE ENERGY
DOI
https://doi.org/10.1016/j.renene.2021.08.061
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Active carbon/graphene hydrogel nanocomposites as a symmetric device for supercapacitors
ATEŞ, MURAT; Cinar, Damla; Caliskan, Sinan; GEÇGEL, ÜNAL; ÜNER, OSMAN; BAYRAK, YÜKSEL; Candan, Idris (Informa UK Limited, 2016-01-01)
Activated carbons (ACs) are successfully synthesized from Elaeagnus grain by a simple chemical synthesis methodology and demonstrated as novel, suitable supercapacitor electrode materials for graphene hydrogel (GH)/AC nanocomposites. GH/AC nanocomposites are synthesized via hydrothermal process at temperature of 180 degrees C. The low-temperature thermal exfoliation approach is convenient for mass production of graphene hydrogel (GH) at low cost and it can be used as electrode material for energy storage ap...
Alternative surface texturing, passivation and charge selective contacts for crystalline silicon solar cells
Sarıgül Duman, Elif; Turan, Raşit; Yerci, Selçuk; Department of Micro and Nanotechnology (2022-9-2)
This study focuses on realizing three crucial steps in silicon solar cell manufacturing by utilizing alternative methods. Black silicon is of interest as an alternative surface texturing method for achieving enhanced light trapping and reduced reflection of the crystalline silicon solar cell. Black silicon fabrication via the inductively coupled plasma reactive ion etching method and the feasibility of black silicon solar cells were investigated. Reduced optical reflectance was achieved with a total weighte...
Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films
Ünalan, Hüsnü Emrah; Kuo, Daniel; Parekh, Bhavin; Amaratunga, Gehan; Chhowalla, Manish (Royal Society of Chemistry (RSC), 2008-01-01)
The fabrication of flexible organic photovoltaics (OPVs) which utilize transparent and conducting single walled carbon nanotube (SWNT) thin films as current collecting electrodes on plastic substrates in zinc oxide nanowire (ZnO NW)/poly(3-hexylthiophene) (P3HT) bulk heterojunction photovoltaic devices is reported. The bulk heterojunctions for exciton dissociation are created by directly growing ZnO nanowires from solution on the SWNT electrodes and spin coating the P3HT polymer. A maximum OPV power convers...
Impact modified epoxy/montmorillonite nanocomposites: synthesis and characterization
Isik, I; Yılmazer, Ülkü; Bayram, Göknur (2003-09-01)
Diglycidyl ether of bisphenol A type epoxy resin-polyether polyol-organically treated montmorillonite ternary nanocomposites were synthesized in this study. The effects of addition of polyether polyol as an impact modifier on morphological, thermal and mechanical properties of nanocomposites were investigated by X-ray diffraction, scanning electron microscopy (SENI), differential scanning calorimetry, impact and tensile testing. The results showed that organically treated montmorillonite is intercalated by ...
Stability analysis of graphene nanoribbons by molecular dynamics simulations
Dugan, N.; Erkoç, Şakir (Wiley, 2008-04-01)
In this work, stability of graphene nanoribbons are investigated using molecular dynamics. Simulations include heating armchair and zigzag-edged nanoribbons of widths varying between one and nine hexagonal rings until the bonds between carbon atoms start to break. Breaking temperatures and binding energies per atom for different widths are presented for both armchair and zigzag-edged cases. A nontrivial relation between stability and width is observed and discussed.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Altuntepe et al., “Hybrid transparent conductive electrode structure for solar cell application,”
RENEWABLE ENERGY
, vol. 180, pp. 178–185, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94516.