Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On the notion of stability of order convergence in vector lattices
Date
1994-09-01
Author
Gorokhova, SG
Emelyanov, Eduard
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
107
views
0
downloads
Cite This
In the theory of Banach lattices the following criterion for a norm to be order continuous is established: a norm is order continuous if and only if every order bounded sequence of positive pairwise disjoint elements in a lattice converges to zero in norm. In this paper we give a criterion for order convergence to be stable in a rather wide class of vector lattices which includes all Köthe spaces. The formulation of the criterion is analogous to that of the above-mentioned criterion for a norm to be order continuous. Namely, under certain conditions imposed on a vector lattice, stability of order convergence is equivalent to the condition that every order bounded sequence of positive pairwise disjoint elements converges relatively uniformly to zero. Furthermore, we study some types of order ideals in vector lattices. In terms of these ideals we give clarified versions of the above-stated criterions. As for notation and terminology, see for example [1,2].
URI
https://hdl.handle.net/11511/94711
Journal
SIBERIAN MATHEMATICAL JOURNAL
DOI
https://doi.org/10.1007/bf02104568
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
On the Poisson sum formula for the analysis of wave radiation and scattering from large finite arrays
Aydın Çivi, Hatice Özlem; Chou, HT (1999-05-01)
Poisson sum formulas have been previously presented and utilized in the literature [1]-[8] for converting a finite element-by-element array field summation into an alternative representation that exhibits improved convergence properties with a view toward more efficiently analyzing wave radiation/scattering from electrically large finite periodic arrays. However, different authors [1]-[6] appear to use two different versions of the Poisson sum formula; one of these explicitly shows the end-point discontinui...
On local finiteness of periodic residually finite groups
Kuzucouoglu, M; Shumyatsky, P (2002-10-01)
Let G be a periodic residually finite group containing a nilpotent subgroup A such that C-G (A) is finite. We show that if [A, A(g)] is finite for any g is an element of G, then G is locally finite.
On a Fitting length conjecture without the coprimeness condition
Ercan, Gülin (Springer Science and Business Media LLC, 2012-08-01)
Let A be a finite nilpotent group acting fixed point freely by automorphisms on the finite solvable group G. It is conjectured that the Fitting length of G is bounded by the number of primes dividing the order of A, counted with multiplicities. The main result of this paper shows that the conjecture is true in the case where A is cyclic of order p (n) q, for prime numbers p and q coprime to 6 and G has abelian Sylow 2-subgroups.
On the Poisson sum formula for analysis of EM radiation/scattering from large finite arrays
Aydın Çivi, Hatice Özlem; Chou, HT (1998-01-01)
A useful procedure, that has been described previously in the literature, employs the Poisson sum formula to represent the solution to the fields of a three-dimensional (3D) large periodically spaced finite planar array problem configuration as a convolution of the infinite planar periodic array solution and the Fourier transform of the equivalent aperture distribution over the finite array. It is shown here that the Poisson sum formula utilized by Felsen and Carin (see J. Opt. Soc. Am. A, vol.11, no.4, p.1...
On decoding interleaved reed-solomon codes
Yayla, Oğuz; Özbudak, Ferruh; Department of Cryptography (2011)
Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher-Kiayias-Yung is extended to the polynomials whose degrees are allowed to be distinct. Furthermore, it is observed that probability of the algorithm can be increased. Specifically, for a finite field $\F$, we present a probabilistic algorithm which can recover polynomials $p_1,\ldots, p_r \in \F[x]$ of degree less than $k_1,k_2,\ldots,k_r$, respectively with given field evaluations $p_l(z_i) = y_{i,l}$ for all $i \in I$, $
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Gorokhova and E. Emelyanov, “On the notion of stability of order convergence in vector lattices,”
SIBERIAN MATHEMATICAL JOURNAL
, vol. 35, no. 5, pp. 912–916, 1994, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94711.