Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
On the Poisson sum formula for analysis of EM radiation/scattering from large finite arrays
Date
1998-01-01
Author
Aydın Çivi, Hatice Özlem
Pathak, PH
Chou, HT
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
A useful procedure, that has been described previously in the literature, employs the Poisson sum formula to represent the solution to the fields of a three-dimensional (3D) large periodically spaced finite planar array problem configuration as a convolution of the infinite planar periodic array solution and the Fourier transform of the equivalent aperture distribution over the finite array. It is shown here that the Poisson sum formula utilized by Felsen and Carin (see J. Opt. Soc. Am. A, vol.11, no.4, p.1291-1306, 1994) and by Felsen and Ribas (see IEEE Trans. Antennas Propagat., vo1.44, no.3, p.375-82, 1996) is exact, hence the use of the less complete Poisson sum formula of Ishimaru (1962), Ishimaru et al. (1985) and Skrivervik et al. (1992, 1993) in finite array problems provides somewhat less accurate results particularly for the wide angle radiation/scattering directions while it provides results in the stronger main beam region that are essentially as accurate as those predicted by the use of the exact Poisson sum formula of Felsen et al.
Subject Keywords
Electromagnetic radiation
,
Scattering
,
Planar arrays
,
Convolution
,
Fourier transforms
,
Apertures
,
Optimized production technology
,
Antennas and propagation
URI
https://hdl.handle.net/11511/42882
DOI
https://doi.org/10.1109/aps.1998.702048
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar