Forecasting the Hydro Inflow and Optimization of Virtual Power Plant Pricing

2021-01-01
Çabuk, Sezer
Mert, Özenç Murat
Kestel, Sevtap Ayşe
Kalaycı, Erkan
Hydro inflow forecasting is crucial for effective hydro optimization, virtual power plant pricing, volume risk management, and weather derivatives pricing in the electricity markets. Predicting hydro inflow allows the decision-makers to economically use water for optimal periods, quantify volume risk and determine effective portfolio management strategies. This study aims pricing a hydroelectricity power plant as a Virtual Power Plant based on Turkish energy markets. For pricing of such a non-standard option, inflow and price scenarios and optimization model with constraints are performed. For the hydro inflow forecasting utilized for the optimization model, SARIMAX with precipitation as an exogenous variable is applied. In addition to the point forecasts, we generate various inflow scenarios based on the residuals as a stochastic process for defined VPP. Moreover, a hydro optimization problem where the objective function maximizes the expected value of generation by tracing generated inflow and price scenarios is made. Price scenarios are simulated using the hourly behavior of historical Day-Ahead Market. The optimization outputs are evaluated according to different prices and inflow levels. For a defined VPP, Volume at Risk measure is defined to measure the risky volume for the valuation of VPP.

Suggestions

Hydro Inflow Forecasting and Virtual Power Plant Pricing in the Turkish Electricity market
Çabuk, Sezer; Kestel, Sevtap Ayşe; Kalaycı, Erkan (2019-05-23)
Hydro inflow forecasting with most accurate quantitative models is a very crucial subject for effective hydro optimization, virtual power plant pricing, volume risk management and weather derivatives pricing in the Turkish electricity market. Predicting increase or decrease in hydro inflow, seasonal characteristics of hydrological years such as wet, dry or normal, allow the decision-makers to economically use water for optimal periods, quantify of volume risk and determine effective portfolio management str...
Hydro inflow forecasting and virtual power plant pricing in the Turkish electricity market
Çabuk, Sezer; Kestel, Sevtap Ayşe; Danışoğlu, Seza; Department of Financial Mathematics (2016)
Hydro inflow forecasting with most accurate quantitative models is a very crucial subject for effective hydro optimization, virtual power plant pricing, volume risk management and weather derivatives pricing in the Turkish electricity market. Predicting increase or decrease in hydro inflow, seasonal characteristics of hydrological years such as wet, dry or normal, allow the decision makers to economically use water for optimal periods, quantify of volume risk and determine effective portfolio management strat...
On the parametric and nonparametric prediction methods for electricity load forecasting
Erişen, Esra; İyigün, Cem; Department of Industrial Engineering (2013)
Accurate electricity load forecasting is of great importance in deregulated electricity markets. Market participants can reap significant financial benefits by improving their electricity load forecasts. Electricity load exhibits a complex time series structure with nonlinear relationships between the variables. Hence, new models with higher capabilities to capture such nonlinear relationships need to be developed and tested. In this thesis, we present a parametric and a nonparametric method for short-term ...
Wavelet Multivariate Adaptive Regression Splinesand Their Application to the UK Electricity Market
Yıldırım, Miray Hanım; Bayrak, Özlem Türker; Kestel, Sevtap Ayşe; G Wilhelm, Weber (null; 2015-05-16)
The growing effect of electricity prices on energy markets appeals for more accurate forecasting techniques since the market suffers from high volatility, high frequency, nonstationarity and multiple seasonality. Aiming at maximum utilities under highly-volatile conditions, both the supplier and the consumer sides seek to monitor and response to the ongoing changes of the electricity prices. In this study, we use a new hybrid approach, called Wavelet - Multivariate Adaptive Regression Splines (W MARS), to f...
Stochastic wind-thermal generation coordination for Turkish day-ahead electricity market /
Aydoğdu, Aycan; Güven, Ali Nezih; Tör, Osman Bülent; Department of Electrical and Electronics Engineering (2014)
Uncertainties in wind power forecast, day-ahead and imbalance prices for the next day possess a great deal of risk to the profit of generation companies (GENCOs) participating in a day-ahead electricity market. GENCOs are exposed to imbalance penalties in the balancing market for any mismatch between their day-ahead power bids and real-time generations. Proper coordination of wind generation with thermal generation reduces this risk associated with wind uncertainty. This thesis proposes an optimal bidding a...
Citation Formats
S. Çabuk, Ö. M. Mert, S. A. Kestel, and E. Kalaycı, Forecasting the Hydro Inflow and Optimization of Virtual Power Plant Pricing. 2021.