Crustal Structure of the Western Anatolian Extensional Province: Evidence for a ductile lower crust through the joint inversion of Receiver Functions and Dispersion Data

2014-12-15
Delph, Jonathan R.
Kahraman, Metin
Zandt, George
Beck, Susan L.
Özacar, Atilla Arda
Turkelli, Niyazi
Western Anatolia is one of the most seismically active regions in the world, undergoing broad N-S extension associated with the rollback of the Aegean slab in the south. This region is characterized by high heat-flow, recent volcanism, and core-complex formation. We use >3500 receiver functions from a dense array of 47 stations located in western Turkey and dispersion data from a recent regional-scale, ambient noise tomography study to invert for shear-wave velocity as a function of depth. Using this technique, we obtain an unprecedented three-dimensional shear-wave velocity model that characterizes the crust of western Turkey. We find a sharp Moho transition beneath much of western Anatolia, with crustal thickness varying from ~25 km near the Aegean Sea to ~35 km beneath the Fethiye Lobe correlating with the topography in western Turkey. The lower crust exhibits a relatively continuous ~10-15 km thick low shear-wave velocity layer (LVL) beneath most of western Anatolia, reaching velocities below 3.0 km/s in some places. The top of this LVL marks the lower boundary of crustal seismicity. These characteristics suggest that the lower crust in western Anatolia is behaving as a ductile solid, as seismic velocities in this range at lower crustal depths are indicative of the presence of fluids (possibly partial melts when considering the high heat-flow in the region). We propose that the lower crust in this region may be undergoing local crustal flow due to the N-S dominated stress regime, which led to the formation of the sharp, low-relief Moho observed in western Turkey. Across the Fethiye-Burdur Fault Zone, we see the slowest S-wave velocities in the lower crust, reaching ~2.8 km/s. Unlike elsewhere in western Turkey, this region has relatively low surficial heat-flow and no recent volcanism. Therefore, the anomaly in the Fethiye Lobe is likely due to a different mechanism than western Turkey. We also observe a very slow uppermost mantle beneath this region, with shear-wave speeds < 4.2 km/s. We attribute this anomaly to subduction related processes, such as the introduction of aqueous fluids from the underthrusting of thick, hydrated sediments or alternatively, to possible serpentinization of the upper-mantle. Mantle wavespeeds transition to more typical velocities across the Fethiye-Burdur Fault Zone.
American Geophysical Union 2014 Fall Meeting

Suggestions

Geochemistry, tectono-magmatic discrimination and radiolarian ages of basic extrusives within the Izmir-Ankara Suture Belt (NW Turkey): Time constraints for the neotethyan evolution
Göncüoğlu, Mehmet Cemal; Tekin, U. Kagan (2006-06-01)
The Dagkuplu Melange in the Central Sakarya Valley represents the northernmost outcrops of the Izmir-Ankara Suture Belt in northwest Anatolia. In addition to blocks and slivers of serpentinite, gabbro, blueschist, neritic and pelagic limestones, it includes blocks of basic volcanic rocks associated with radiolarian cherts, pelagic carbonates and mudstones.
Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography
Biryol, C. Berk; Beck, Susan L.; Zandt, George; Özacar, Atilla Arda (2011-03-01)
P>Lithospheric deformation throughout Anatolia, a part of the Alpine-Himalayan orogenic belt, is controlled mainly by collision-related tectonic escape of the Anatolian Plate and subduction roll-back along the Aegean Subduction Zone. We study the deeper lithosphere and mantle structure of Anatolia using teleseismic, finite-frequency, P-wave traveltime tomography. We use data from several temporary and permanent seismic networks deployed in the region. Approximately 34 000 P-wave relative traveltime residual...
Crust and upper mantle dynamics of Turkey inferred from passive seismology: implications of segmented slab geometry
Berk, Biryol; Susan, Beck; George, Zandt; Kaymakcı, Nuretdin (2010-10-08)
Turkey lies within the Alpine–Himalayan orogenic belt and is shaped by continent-continent collision in the east, slab rollback and back arc extension in the west and westward extrusion of Anatolian plate in between. In this study, passive seismic data are used to analyze the crust and upper mantle structure of the region to test different tectonic models proposed for Turkey and its surrounding. In Eastern Turkey, continent-continent collision resulted in a topographic high, the East Anatolian Plateau which...
Stratigraphy and pre-Miocene tectonic evolution of the southwestern part of the Sivas Basin, Central Anatolia, Turkey
Dirik, K; Göncüoğlu, Mehmet Cemal; Kozlu, H (1999-07-01)
In central Anatolia there are several important basins developed mainly after closure of the northern branch of Neotethys. These are the Haymana, Tuzgolu, Ulukisla, Kizihrmak, Cankiri-Corum and Sivas basins. The Sivas Basin is located in the eastern part of central Anatolia between the Central Anatolian Crystalline Complex (CACC) in the north and Taurides in the south. The basement to the southeastern part of the basin consists of recrystallized limestone and clastics of the Permian-Lower Cretaceous Bunyan ...
Geochemistry of mafic rocks of the Karakaya complex, Turkey: evidence for plume-involvement in the Palaeotethyan extensional regime during the Middle and Late Triassic
Sayıt, Kaan; Göncüoğlu, Mehmet Cemal (2009-03-01)
The Karakaya Complex within the Early Mesozoic Cimmerian Orogeny in northern Turkey represents the remnants of the Palaeotethys. It includes slivers and/or mega-blocks of slightly metamorphic basic volcanic rocks associated with fossiliferous sediments as well as hypabyssal and intrusive rocks with basaltic-andesitic to ultramafic compositions. They display two distinct compositional groups; namely alkaline and variably tholeiitic. The alkaline basalt samples are more akin to oceanic-island basalts (OIB) wi...
Citation Formats
J. R. Delph, M. Kahraman, G. Zandt, S. L. Beck, A. A. Özacar, and N. Turkelli, “Crustal Structure of the Western Anatolian Extensional Province: Evidence for a ductile lower crust through the joint inversion of Receiver Functions and Dispersion Data,” presented at the American Geophysical Union 2014 Fall Meeting, San-Francisco, Kostarika, 2014, Accessed: 00, 2021. [Online]. Available: https://abstractsearch.agu.org/meetings/2014/FM/T13A-4627.html.