Quantal diffusion description of isotope production via the multinucleon transfer mechanism in Ca-48+U-238 collisions

2021-11-01
Ayik, S.
Arik, M.
Karanfil, E. C.
Yılmaz, Osman
Yilmaz, B.
Umar, A. S.
As an extension of previous work, we calculate the production cross section of heavy neutron-rich isotopes by employing the quantal diffusion description to 48Ca+238U collisions. The quantal diffusion is deduced from stochastic mean-field approach, and transport properties are determined in terms of time-dependent single-particle wave functions of the time-dependent Hartree-Fock theory. As a result, the approach allows for prediction of production cross sections without any adjustable parameters. The secondary cross sections by particle emission are calculated with the help of the statistical GEMINI++ code.
PHYSICAL REVIEW C

Suggestions

Quantal diffusion approach for multinucleon transfers in Xe plus Pb collisions
Ayik, S.; Yilmaz, B.; Yılmaz, Osman; Umar, A. S. (2019-07-01)
Employing a quantal diffusion description based on the stochastic mean-field approach, we analyze the mass distribution of the primary fragments in the collisions of the Xe-136 + Pb-208 system at the bombarding energy E-c.m. = 526 MeV. This quantal approach provides a good description of the primary fragment distribution without any adjustable parameter, including the effects of shell structure
Quantal description of spinodal instabilities in a symmetric nuclear matter
Acar Çakırca, Fatma; Yılmaz, Osman; Ayık, Şakir; Department of Physics (2017)
Spinodal instability mechanism and early development of density fluctuations for asymmetric hot nuclear matter produced in heavy-ion collisions are investigated in non-relativistic and relativistic stochastic mean-field approaches. In relativistic approach, a stochastic extension of the relativistic mean-field approximation based on non-linear Walecka model employed in a quantal framework. The mediator rho meson is added to the Walecka model in order to investigate the isospin dependence of the system. The gro...
Quantal diffusion description of multinucleon transfers in heavy-ion collisions
Ayik, S.; Yilmaz, B.; Yılmaz, Osman; Umar, A. S. (2018-05-29)
Employing the stochastic mean-field (SMF) approach, we develop a quantal diffusion description of the multi-nucleon transfer in heavy-ion collisions at finite impact parameters. The quantal transport coefficients are determined by the occupied single-particle wave functions of the time-dependent Hartree-Fock equations. As a result, the primary fragment mass and charge distribution functions are determined entirely in terms of the mean-field properties. This powerful description does not involve any adjustab...
Quantal description of instabilities in nuclear matter in a stochastic relativistic model
Yılmaz Tüzün, Özgül; Gokalp, A. (2011-10-01)
Spinodal instabilities and early development of density fluctuations are investigated in the stochastic extension of Walecka-type relativistic mean field including non-linear self-interactions of scalar mesons in the quantal framework. Calculations indicate that at low temperatures T = 0-2 MeV, the initial growth of density fluctuations and hence the initial condensation mechanism occur much faster in quantal calculations than those found in the semi-classical framework. However, at higher temperatures T = ...
Quantal description of nucleon exchange in a stochastic mean-field approach
Ayik, S.; YILMAZ TÜZÜN, ÖZGÜL; YILMAZ, BÜLENT; Umar, A. S.; GÖKALP, AHMET; Turan, Gürsevil; Lacroix, D. (2015-05-04)
The nucleon exchange mechanism is investigated in central collisions of symmetric heavy ions in the basis of the stochastic mean-field approach. Quantal diffusion coefficients for nucleon exchange are calculated by including non-Markovian effects and shell structure. Variances of fragment mass distributions are calculated in central collisions of Ca-40 + Ca-40, Ca-48 + Ca-48, and N-56 i+ Ni-56 systems.
Citation Formats
S. Ayik, M. Arik, E. C. Karanfil, O. Yılmaz, B. Yilmaz, and A. S. Umar, “Quantal diffusion description of isotope production via the multinucleon transfer mechanism in Ca-48+U-238 collisions,” PHYSICAL REVIEW C, vol. 104, no. 5, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94933.