Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Quantal description of instabilities in nuclear matter in a stochastic relativistic model
Date
2011-10-01
Author
Yılmaz Tüzün, Özgül
Gokalp, A.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
Spinodal instabilities and early development of density fluctuations are investigated in the stochastic extension of Walecka-type relativistic mean field including non-linear self-interactions of scalar mesons in the quantal framework. Calculations indicate that at low temperatures T = 0-2 MeV, the initial growth of density fluctuations and hence the initial condensation mechanism occur much faster in quantal calculations than those found in the semi-classical framework. However, at higher temperatures T = 4-5 MeV,semi-classical calculations provide a good approximation for quantal description. Calculations show that the typical size of initial condensation regions is not very sensitive to the temperature, but depends on the initial baryon density. These findings are consistent with previous investigations carried out in the non-relativistic approach with an effective Skyrme interaction.
Subject Keywords
Mean-Field theory
,
Surface
,
Density
,
Fluctuations
,
Spinodal decomposition
URI
https://hdl.handle.net/11511/62839
Journal
EUROPEAN PHYSICAL JOURNAL A
DOI
https://doi.org/10.1140/epja/i2011-11123-3
Collections
Department of Mathematics and Science Education, Article
Suggestions
OpenMETU
Core
Quantal description of nucleon exchange in a stochastic mean-field approach
Ayik, S.; YILMAZ TÜZÜN, ÖZGÜL; YILMAZ, BÜLENT; Umar, A. S.; GÖKALP, AHMET; Turan, Gürsevil; Lacroix, D. (2015-05-04)
The nucleon exchange mechanism is investigated in central collisions of symmetric heavy ions in the basis of the stochastic mean-field approach. Quantal diffusion coefficients for nucleon exchange are calculated by including non-Markovian effects and shell structure. Variances of fragment mass distributions are calculated in central collisions of Ca-40 + Ca-40, Ca-48 + Ca-48, and N-56 i+ Ni-56 systems.
Quantal description of spinodal instabilities in a symmetric nuclear matter
Acar Çakırca, Fatma; Yılmaz, Osman; Ayık, Şakir; Department of Physics (2017)
Spinodal instability mechanism and early development of density fluctuations for asymmetric hot nuclear matter produced in heavy-ion collisions are investigated in non-relativistic and relativistic stochastic mean-field approaches. In relativistic approach, a stochastic extension of the relativistic mean-field approximation based on non-linear Walecka model employed in a quantal framework. The mediator rho meson is added to the Walecka model in order to investigate the isospin dependence of the system. The gro...
Conformal symmetry in field theory
Huyal, Ulaş; Tekin, Bayram; Department of Physics (2011)
In this thesis, conformal transformations in d and two dimensions and the results of conformal symmetry in classical and quantum field theories are reviewed. After investigating the conformal group and its algebra, various aspects of conformal invariance in field theories, like conserved charges, correlation functions and the Ward identities are discussed. The central charge and the Virasoro algebra are briefly touched upon.
Conformal black hole solutions of axidilaton gravity in D dimensions
Cebeci, H; Dereli, T (2002-02-15)
Static, spherically symmetric solutions of axidilaton gravity in D dimensions are given in the Brans-Dicke frame for arbitrary values of the Brans-Dicke constant omega and an axion-dilaton coupling parameter k. The mass and the dilaton and axion charges are determined and a BPS bound is derived. There exists a one-parameter family of black hole solutions in the scale-invariant limit.
Phase transition in compact QED3 and the Josephson junction
Onemli, VK; Tas, M; Tekin, Bayram (2001-08-01)
We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago in [1]. Phase transition in compact QED is well studied thus we employ the 'duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Yılmaz Tüzün and A. Gokalp, “Quantal description of instabilities in nuclear matter in a stochastic relativistic model,”
EUROPEAN PHYSICAL JOURNAL A
, pp. 0–0, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/62839.