Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Existentially closed groups
Download
10435573.pdf
Date
2021-12-10
Author
Gürel, Yağmur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
365
views
260
downloads
Cite This
A group G is called an Existentially Closed Group (Algebraically Closed Group) if for every finite system of equations and inequations with coefficients from G which has a solution in an over group H ≥ G, has a solution in G. Existentially closed groups were introduced by W. R. Scott in 1951. The notion of existentially closed groups is close to the notion of algebraically closed fields but there are substantial differences. Existentially closed groups were studied and advanced by B. H. Neumann. In this survey thesis we have studied the articles of B. H. Neumann and the paper of W. R. Scott.
Subject Keywords
Existentially closed groups
,
Algebraically closed groups
,
Infinite groups
URI
https://hdl.handle.net/11511/95230
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
RELATIVE GROUP COHOMOLOGY AND THE ORBIT CATEGORY
Pamuk, Semra (2014-07-03)
Let G be a finite group and F be a family of subgroups of G closed under conjugation and taking subgroups. We consider the question whether there exists a periodic relative F-projective resolution for Z when F is the family of all subgroups HG with rkHrkG-1. We answer this question negatively by calculating the relative group cohomology FH*(G, ?(2)) where G = Z/2xZ/2 and F is the family of cyclic subgroups of G. To do this calculation we first observe that the relative group cohomology FH*(G, M) can be calc...
NILPOTENT LENGTH OF A FINITE SOLVABLE GROUP WITH A FROBENIUS GROUP OF AUTOMORPHISMS
Ercan, Gülin; Ogut, Elif (2014-01-01)
We prove that a finite solvable group G admitting a Frobenius group FH of automorphisms of coprime order with kernel F and complement H such that [G, F] = G and C-CG(F) (h) = 1 for all nonidentity elements h is an element of H, is of nilpotent length equal to the nilpotent length of the subgroup of fixed points of H.
Beauville structures in p-groups
Gül, Şükran; Ercan, Gülin; Fernández-Alcober, Gustavo Adolfo; Department of Mathematics (2016)
Given a finite group G and two elements x, y in G, we denote by Sigma(x,y) the union of all conjugates of the cyclic subgroups generated by x, y and xy. Then G is called a Beauville group of unmixed type if the following conditions hold: (i) G is a 2-generator group. (ii) G has two generating sets {x1,y1} and {x2, y2} such that Sigma (x1, y1) intersection Sigma(x2, y2) is 1. In this case, {x1, y1} and {x2, y2} are said to form a Beauville structure for G. The main purpose of this thesis is to extend the kn...
Locally finite groups and their subgroups with small centralizers
ERSOY, KIVANÇ; Kuzucuoğlu, Mahmut; Shunwatsky, Pavel (2017-07-01)
Let p be a prime and G a locally finite group containing an elementary abelian p-subgroup A of rank at least 3 such that C-G(A) is Chernikov and C-G(a) involves no infinite simple groups for any a is an element of A(#). We show that G is almost locally soluble (Theorem 1.1). The key step in the proof is the following characterization of PSLp(k): An infinite simple locally finite group G admits an elementary abelian p-group of automorphisms A such that C-G(A) is Chernikov and C-G(A) Keywords: involves no inf...
Torsion Generators Of The Twist Subgroup
Altunöz, Tülin; Pamuk, Mehmetcik; Yildiz, Oguz (2022-1-01)
We show that the twist subgroup of the mapping class group of a closed connected nonorientable surface of genus g >= 13 can be generated by two involutions and an element of order g or g -1 depending on whether 9 is odd or even respectively.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Gürel, “Existentially closed groups,” M.S. - Master of Science, Middle East Technical University, 2021.