Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A novel surface-integral-equation formulation for efficient and accurate electromagnetic analysis of near-zero-index structures
Date
2022-03-01
Author
İbili, Hande
Ozmu, Utku
Karaosmanoglu, Bariscan
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
226
views
0
downloads
Cite This
We consider accurate and iteratively efficient solutions of electromagnetic problems involving homogenized near-zero-index (NZI) bodies using surface-integral-equation formulations in the frequency domain. NZI structures can be practically useful in a plethora of optical applications, as they possess near-zero permittivity and/or permeability values that cannot be found in nature. Hence, numerical simulations are of the utmost importance for rigorous design and analysis of NZI structures. Unfortunately, small values of electromagnetic parameters bring computational challenges in numerical solutions of homogeneous models. Conventional formulations available in the literature encounter stability issues that make them inaccurate and/or inefficient as permittivity and/or permeability approach zero. We propose a novel formulation that involves a well-balanced combination of operators and that can provide both accurate and efficient solutions for all NZI cases. Numerical results are presented to demonstrate the superior properties of the developed formulation in comparison to the conventional ones.
Subject Keywords
near-zero-index structures
,
homogenization
,
surface integral equations
,
boundary element methods
,
full-wave methods
,
DIELECTRIC OBJECTS
,
SCATTERING
,
DIAGONALIZATION
,
REALIZATION
URI
https://hdl.handle.net/11511/95427
Journal
JOURNAL OF OPTICS
DOI
https://doi.org/10.1088/2040-8986/ac3e01
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A Modal Superposition Method for the Analysis of Nonlinear Systems
Ferhatoglu, Erhan; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (2016-01-28)
In the determination of response of nonlinear structures, computational burden is always a major problem even if frequency domain methods are used. One of the methods used to decrease the computational effort is the modal superposition method for nonlinear systems where the modes of the linear system are used in the calculation. However, depending on the type of the nonlinearity, in order to obtain an accurate response, the number of modes retained in the response calculations needs to be increased, which i...
A Comparative Study of Surface Integral Equations for Accurate and Efficient Analysis of Plasmonic Structures
Karaosmanoglu, Bariscan; Yilmaz, Akif; Ergül, Özgür Salih (2017-06-01)
Surface integral equations, which are commonly used in electromagnetic simulations, have recently been applied to various plasmonic problems, while there is still no complete agreement on which formulations provide accurate and efficient solutions. In this paper, we present the strong material dependences of the conventional formulations, revealing their contradictory performances for different problems. We further explain the numerical problems in the constructed matrix equations, shedding light on the des...
An Efficient Numerical Approach for Evaluating Sommerfeld Integrals Arising in the Construction of Green's Functions for Layered Media
Özgün, Özlem; Mittra, Raj; Kuzuoğlu, Mustafa (2022-01-01)
This paper presents an efficient approach for evaluating the Sommerfeld integrals in the spectral domain, whose integrands typically show an oscillatory and slowly decaying behavior at high frequencies, e.g., in the millimeter wave regime. It is well known that these integrals arise in the representations of the dyadic Green's functions of layered media and efficient computation of these Green's functions is key to rapid CEM modeling of patch antennas and printed circuits designed for 5G appli...
A Novel Numerical Technique for Analyzing Metasurfaces
ÖZGÜN, ÖZLEM; Mittra, Raj; Kuzuoğlu, Mustafa (2019-12-31)
This work presents a novel technique for efficient numerical modeling of electromagnetic scattering from metasurfaces comprising of truncated periodic or locally-varying quasi-periodic surfaces. The proposed technique hybridizes the periodic Finite Element Method (FEM) with the Method of Moments (MoM) to develop an algorithm far more efficient than conventional numerical methods for electromagnetic scattering from arbitrary objects. The key feature of the proposed algorithm is that it takes advantage of the...
Applications of hybrid discrete Fourier transform-moment method to the fast analysis of large rectangular dipole arrays printed on a thin grounded dielectric substrate
Chou, HT; Ko, HK; Aydın Çivi, Hatice Özlem; ERTÜRK, VAKUR BEHÇET (2002-08-05)
Recently a discrete Fourier transform-method of moments (DFT-MoM) scheme was developed for fast analysis of electrically large rectangular planar dipole arrays, which has been shown to be very efficient in terms of number reduction of unknown variables and computational complexity. The applications of this DFT-MoM to treat dipole arrays printed on a grounded dielectric substrate are examined in this Letter. Numerical results are presented to validate its efficiency and accuracy. (C) 2002 Wiley Periodicals, ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. İbili, U. Ozmu, B. Karaosmanoglu, and Ö. S. Ergül, “A novel surface-integral-equation formulation for efficient and accurate electromagnetic analysis of near-zero-index structures,”
JOURNAL OF OPTICS
, vol. 24, no. 3, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/95427.