Hybrid design of spectral splitters and concentrators of light for solar cells using iterative search and neural networks

Yolalmaz, Alim
Yüce, Emre
The need for optically multi-functional micro- and nano-structures is growing in various fields. Designing such structures is impeded by the lack of computationally low-cost algorithms. In this study, we present a hybrid design scheme, which relies on a deep learning model and the local search optimization algorithm, to optimize a diffractive optical element that performs spectral splitting and spatial concentration of broadband light for solar cells. Using generated data set during optimization of a diffractive optical element, which is a one-time effort, we design topography of diffractive optical elements by using a deep learning-based inverse design scheme. We show that further iterative optimization of the reconstructed diffractive optical elements increases amount of spatially concentrated and spectrally split light. Our joint design approach both speeds up optimization of diffractive optical elements as well as providing better performance at least 57% excess light concentration with spectral splitting. The algorithm that we develop here will enable advanced and efficient design of multifunctional phase plates in various fields besides the application that we target in solar energy. The algorithm that we develop is openly available to contribute to other applications that rely on phase plates.


Plasmonic-photonic arrays with aperiodic spiral order for ultra-thin film solar cells
Trevino, Jacob; Forestiere, Carlo; Dİ MARTİNO, Giuliana; Yerci, Selçuk; Priolo, Francesco; Dal Negro, Luca (2012-05-07)
We report on the design, fabrication and measurement of ultrathin film Silicon On Insulator (SOI) Schottky photo-detector cells with nanostructured plasmonic arrays, demonstrating broadband enhanced photocurrent generation using aperiodic golden angle spiral geometry. Both golden angle spiral and periodic arrays of various center-to-center particle spacing were investigated to optimize the photocurrent enhancement. The primary photocurrent enhancement region is designed for the spectral range 600nm-950nm, w...
Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons
DE ANGELIS, Francesco; DAS, Gobind; CANDELORO, Patrizio; PATRINI, Maddalena; GALLI, Matteo; Bek, Alpan; LAZZARINO, Marco; MAKSYMOV, Ivan; LIBERALE, Carlo; ANDREANI, Lucio Claudio; DI FABRIZIO, Enzo (2010-01-01)
The fields of plasmonics, Raman spectroscopy and atomic force microscopy have recently undergone considerable development, but independently of one another. By combining these techniques, a range of complementary information could be simultaneously obtained at a single molecule level. Here, we report the design, fabrication and application of a photonic-plasmonic device that is fully compatible with atomic force microscopy and Raman spectroscopy. Our approach relies on the generation and localization of sur...
Spectral and spatial control of broadband light using wavefront shaping
Yolalmaz, Alim; Yüce, Emre; Yerci, Selçuk; Department of Micro and Nanotechnology (2022-2-9)
Spectral and spatial control of light strongly influences central fields such as solar energy, spectroscopy, holography, and imaging. Enhanced control of propagation, diffraction, scattering, and interference of light using micro-and nano-structures leads to superior performance in these fields. This thesis presents light control in spectral and spatial domains using wavefront control for solar energy, spectroscopy, holography, and imaging applications. Spectral splitting of the sunlight using diffractive o...
Silicon nanowires for network photodetectors and plasmonic applications
Mülazımoğlu, Emre; Ünalan, Hüsnü Emrah; Turan, Raşit; Department of Metallurgical and Materials Engineering (2013)
Being the key component of the semiconductor industry, silicon in nanowire form has gained increased attention. In this thesis, vertical arrays of silicon nanowires (Si NWs) have been fabricated with metal assisted etching method (MAE). MAE method is a simple, solution based and low temperature process. In this method, fabricated nanowires inherit the starting wafer characteristics, such as doping type, density and crystal orientation. In the first part, fabricated NWs in network form have been demonstrated...
Facile fabrication of Au-Ag alloy nanoparticles on filter paper: Application in SERS based swab detection and multiplexing
Khan, Ghazanfar Ali; Demirtaş, O. Özge; Bek, Alpan; Bhatti, Arshad Saleem; Ahmed, Waqqar (2022-05-01)
© 2022 Elsevier B.V.Facile fabrication of flexible substrates containing high concentration of nanoparticles (NPs) is very promising owing to their capability of swab-based surface-enhanced Raman scattering (SERS) trace detection. However, the background signal of the substrate could compromise the trace-detection capabilities. Moreover, the presence of fluorescent molecules may result in intense fluorescence background which could overshadow the Raman peaks. Herein, we demonstrate that the surfactant-free ...
Citation Formats
A. Yolalmaz and E. Yüce, “Hybrid design of spectral splitters and concentrators of light for solar cells using iterative search and neural networks,” PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, vol. 48, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96009.