Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Facile fabrication of Au-Ag alloy nanoparticles on filter paper: Application in SERS based swab detection and multiplexing
Date
2022-05-01
Author
Khan, Ghazanfar Ali
Demirtaş, O. Özge
Bek, Alpan
Bhatti, Arshad Saleem
Ahmed, Waqqar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
156
views
0
downloads
Cite This
© 2022 Elsevier B.V.Facile fabrication of flexible substrates containing high concentration of nanoparticles (NPs) is very promising owing to their capability of swab-based surface-enhanced Raman scattering (SERS) trace detection. However, the background signal of the substrate could compromise the trace-detection capabilities. Moreover, the presence of fluorescent molecules may result in intense fluorescence background which could overshadow the Raman peaks. Herein, we demonstrate that the surfactant-free bimetallic (Ag and Au) NPs, synthesized directly on the filter paper, are very effective in reducing the background signal in SERS-based trace detection. Simple soaking of filter paper in a mixture of HAuCl4 and AgNO3 solution, and its immediate drying and reduction produces Au-Ag alloy NPs on the filter paper. Interestingly, the substrates are very effective in quenching the background fluorescence of both filter paper and the analyte, thereby effectively detecting the SERS signature of the fluorescent molecules. In particular, Rhodamine6G (R6G) concentrations down to 10−10 M were detected under resonance excitation, both by solution drying and swabbing. The swab detection of ammonium nitrate, which is usually used in homemade explosives, was also demonstrated. Moreover, owing to the fluorescence quenching properties, the Au-Ag alloy substrates (AuAgS) were able to carry out the swab-based multiplex-detection of crystal violet (CV), Brilliant Cresyl Blue (BCB), and R6G upon resonance excitation of R6G. Finally, the substrates have shown good reproducibility, stability, and signal uniformity. This verifies the potential of AuAgS for real-world trace-detection applications.
Subject Keywords
Fluorescence quenching
,
Gold nanoparticles
,
Silver nanoparticles
,
Surface-enhanced Raman scattering
,
Swab detection
,
Trace detection
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85126542755&origin=inward
https://hdl.handle.net/11511/97681
Journal
Vibrational Spectroscopy
DOI
https://doi.org/10.1016/j.vibspec.2022.103359
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Monolayer Assembly of MultiSpiked Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy-Based Trace Detection of Dyes and Explosives
Ahmed, Waqqar; Demirtas, Ozge; Öztürk, İbrahim Murat; Bek, Alpan (2020-07-01)
For sensitive and reproducible surface-enhanced Raman scattering (SERS)-based trace detection, a SERS platform with high concentration of homogeneously distributed hotspots is needed. Herein, we report a facile monolayer assembly of multispiked gold nanoparticles (MSGNPs) of various sizes over a large area. The assembly was achieved simply by tuning the concentration of MSGNPs in a suspension and subsequently drying it on a substrate under ambient conditions. A monolayer assembly for MSGNP sizes ranging fro...
Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles
Farhadi, Khalil; Forough, Mehrdad; Molaei, Rahim; Hajizadeh, Salahaddin; Rafipour, Aysan (2012-01-01)
The reaction between biologically green synthesized silver nanoparticles (Ag NPs) and mercury (II) ions was introduced as a new and high potential calorimetric sensor for the selective recognition and monitoring of mercuric ions in aqueous samples. The green synthesized silver nanoparticles were characterized with surface plasmon resonance (SPR) ultraviolet spectroscopy (UV-vis), SEM and X-ray diffraction analysis (XRD) techniques. The fresh biologically synthesized silver nanoparticles are yellowish-brown ...
Facile synthesis of (4-nitrophenyl)thio-substituted 1- pyrrolines
Korkmaz, Esra; Zora, Metin; Department of Chemistry (2019)
The importance of heterocyclic compounds is enormous in synthetic organic chemistry due to their presence in bioactive molecules. Five-membered 1-pyrrolines are one of the most important classes of them. They have recently drawn great attention from synthetic chemists since they have a prominent role for the synthesis of a great number of pharmaceutical molecules. Therefore, there is intense research on their synthesis. In this project, we concentrated on the synthesis of (4-nitrophenyl)thio-substituted 1- ...
Uiltrafast Photoinduced Carrier Dynamics of Organic Semiconductors Measured by Time-resolved Terahertz Spectroscopy
Esentürk, Okan; Lane, Paul A.; Heilweil, Edwin J. (2010-01-01)
Intrinsic properties of organic semiconductors are investigated by Time-Resolved Terahertz Spectroscopy (TRTS) to assess their relative mobilities and efficiencies. Our results are well correlated with device measurements and show the effectiveness and advantages of using this non-contact optical technique to rapidly identify prospective materials. After a brief introduction of the TRTS technique, we summarize our results from relative mobility measurements of the organic semiconductor polymers poly(3-hexyl...
Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites
WOLOWSKI, JERY; BADZIAK, JAN; CZARNECKA, ANNA; PARYS, PİETR; PISAREK, MARCİN; ROSINSKI, MARCİN; Turan, Raşit; Yerci, Selçuk (2007-03-01)
This work describes the application of laser ion source (LIS) for fabrication of semiconductor nanostructures, as well as relevant equipment completed and tested in the IPPLM for the EU STREP "SEMINANO" project and the obtained experimental results. A repetitive Pulse laser system of parameters: energy of similar to 0.8 J in a 3.5 ns-pulse, wavelength of 1.06 mu m, repetition rate of up to 10 Hz and intensity on the target of up to 10(11) W/cm(2), has been employed to produce Ge ions intended for ion implan...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. A. Khan, O. Ö. Demirtaş, A. Bek, A. S. Bhatti, and W. Ahmed, “Facile fabrication of Au-Ag alloy nanoparticles on filter paper: Application in SERS based swab detection and multiplexing,”
Vibrational Spectroscopy
, vol. 120, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85126542755&origin=inward.