Simulation and control strategy adaptation of a parabolic trough collector integrated thermal system for industrial processes

Pınarlı, Deniz
In this study, integration of solar heat to a milk pasteurization process is addressed. A single tank system with thermal energy storage (TES) is simulated dynamically by connecting the models of individual components to each other, using a simulation tool coded in Visual Basic. The parabolic trough collector (PTC) model is developed such that the time evolution of temperature distribution along a series of collectors can be observed. Lumped approach is employed in the TES unit model in which the heat transfer fluid (HTF) acts as the storage medium. An on-off control is adapted to the single tank system and the results are presented for the optimized nominal design case. The characteristics and drawbacks of the single-tank system is explored in a parametric analysis. As a result, a two tank architecture is suggested along with PI control of temperature at the collector outlet by mass flow rate modulation. Control strategy is demonstrated in action.


Investigation of olive mill sludge treatment using a parabolic trough solar collector
Ben Othman, Fares; Eddhibi, Fathia; Bel Hadj Ali, Abdessalem; Fadhel, Abdelhamid; Bayer, Özgür; Tarı, İlker; Guizani, Amenallah; Balghouthi, Moncef (2022-01-15)
The olive mill sludge treatment system developed in this study is an indirect solar dryer driven by a solar parabolic trough collector (PTC). A heat exchanger is implemented to heat air with hot oil coming from the solar collector. The developed hot air dryer can treat up to 50 kg of olive mill sludge distributed over six trays at once. The designed system and its components are described, along with their experimental and simulated performance evaluations. With a mean direct normal irradiation (DNI) higher...
Exergetic optimization of generated electric power split in a heat pump coupled poly-generation system
Kilkis, Birol I.; Kılkış, Şiir (2007-01-01)
This study analyzes environmental, energy, and economical benefits of a ground source heat pump, coupled poly-generation system by incorporating exergy into the energy efficiency analysis. Two additional terms, namely the rational exergy efficiency and the coefficient of performance were introduced to the primary energy savings equation in the European Union Directive 2004/8/EC. Based on the new equation, an optimization algorithm was developed, which can quantify the environmental, energy and economy benef...
Simulation Studies of Hole Textured and Planar Microcrystalline Silicon Solar Cell at Different Zenith Angle
Zainab, Sana; Hussain, Shahzad; Altinoluk, Serra H.; Turan, Raşit (2017-09-23)
Efficiency of solar cell greatly depends on its interaction with input solar irradiance. For highly efficient solar cell, absorption of input light should be maximum at all angles. Different surface texturing techniques like pyramid texturing, cone texturing, pillar texturing have been used to increase absorption of light in solar cell. Micro-hole Surface texturing is getting popular in absorption of solar radiation at higher zenith angle. In this paper, effect of varying zenith angle on hole textured solar...
Modeling and computational simulation of adsorption based chemical heat pumps
Yurtsever, Ahmet Onur; Karakaş, Gürkan; Uludağ, Yusuf (2013-01-10)
In this study a methodology is developed for the design of a packed bed reactor to be used in a Chemical Heat Pump (CHP). Adsorption and desorption of ethanol on active carbon packing in the reactor are investigated. Depending on the cycle, i.e. adsorption or desorption, cooling or heating of the reactor material is modeled through transient energy equation. The parameters associated with the vapor-carbon adsorption kinetics are experimentally determined. Then spatial distribution of temperature and adsorbe...
Modeling and financial analysis of a solar-biomass hybrid power plant in Turkey
Özdemir, Merve; Yozgatlıgil, Ahmet; Department of Mechanical Engineering (2017)
Solar thermal and biomass combustion systems can be hybridized via a Rankine cycle to have a continuous electricity generation and lower CO2 footprint. Disadvantages of these two renewable technologies can be overcome by hybridization. In this work; we develop a simulation model for Rankine cycle based, solar-biomass hybrid power plants using the ASPEN PLUS software. Solar parabolic collectors and biomass combustion are arranged in parallel to produce steam for power generation. Using the simulation model; ...
Citation Formats
D. Pınarlı, “Simulation and control strategy adaptation of a parabolic trough collector integrated thermal system for industrial processes,” M.S. - Master of Science, Middle East Technical University, 2022.