Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nanoparticle adsorption induced configurations of nematic liquid crystal droplets
Date
2022-02-01
Author
Sengul, Selin
AYDOĞAN, NİHAL
Büküşoğlu, Emre
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
235
views
0
downloads
Cite This
Nematic liquid crystal (LC) droplets have been widely used for the detection of molecular species. We investigate the response of micrometer sized nematic LC droplets against the adsorption of nanoparticles from aqueous media. We synthesized ti 100 nm-in-diameter silica nanoparticles and modified their sur-faces to mediate either planar or homeotropic LC anchoring and a pH-dependent charge. We show sur -face functionality-and concentration-dependent configurations of the droplets consistent with the change in the surface anchoring and the formation of local heterogeneities upon adsorption of the nanoparticles to LC-aqueous interfaces. The adsorption of nanoparticles modified with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP, homeotropic) exhibit a transition from bipolar to radial, whereas the adsorption of -COOH-terminated counterparts (planar) did not cause a configura-tion transition. By manipulating the electrostatic interactions, we controlled the adsorption of the nanoparticles to the LC-aqueous interfaces, providing access to the physicochemical properties of the nanoparticles. We demonstrate a temporal change in the droplet configurations caused by the adsorption of the nanoparticles functionalized with -COOH/DMOAP mixed monolayers. These results provide a basis for studies in applications for the detection of nano-sized species, for sensing applications that combine nanoparticles with LCs, and for the synthesis of anisotropic composite particles with complex structures. (c) 2021 Elsevier Inc. All rights reserved.
Subject Keywords
Liquid crystals
,
Nanoparticles
,
Adsorption
,
Response
,
Emulsions
,
GOLD NANOPARTICLES
,
AQUEOUS PHASES
,
SURFACES
,
INTERFACES
,
MICROMETER
,
PROTEINS
,
MICROPARTICLES
,
MICRODROPLETS
,
ORIENTATION
,
AMPHIPHILES
URI
https://hdl.handle.net/11511/96119
Journal
JOURNAL OF COLLOID AND INTERFACE SCIENCE
DOI
https://doi.org/10.1016/j.jcis.2021.10.156
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Experimental characterizations of the response of nematic liquid crystal droplets upon adsorption of nanoparticles from aqueous media
Şengül, Selin; Büküşoğlu, Emre; Aydoğan, Nihal; Department of Chemical Engineering (2021-9-08)
Nematic liquid crystal (LC) droplets have been widely used for the detection of molecular species. In this study, we investigated the response of micrometer sized nematic LC droplets against the adsorption of nanoparticles from aqueous media. In the first part of this study, we synthesized ~100 nm-in-diameter silica nanoparticles and modified their surfaces to mediate either planar or homeotropic LC anchoring and a pH-dependent charge. Secondly, we carried out the adsorption of nanoparticles to the LC-aqueo...
Liquid crystal-templated synthesis of polymeric microparticles with complex nanostructures
Akdeniz, Burak; Büküşoğlu, Emre; Department of Chemical Engineering (2019)
Liquid crystals (LC), when combined with photolithography, enable synthesis of microparticles with two- and three-dimensional shapes and internal complexities. We prepared films of nematic LCs using mixtures of reactive (RM257) and non-reactive mesogens (E7) with controlled alignment of LCs at the confining surfaces, photopolymerized the RM257 using a photomask, and then extracted the unreacted mesogens to yield polymeric microparticles. The extraction resulted in a controlled anisotropic shrinkage with an ...
Synthesis of calcium carbonate particles for biomedical applications
Oral, Çağatay Mert; Ercan, Batur; Department of Metallurgical and Materials Engineering (2020)
Calcium carbonate (CaCO3) particles have been widely used in biomedical applications owing to their biocompatibility and biodegradability. In order to effectively utilize CaCO3 particles in biomedical applications, their physical and chemical properties should be systematically controlled. However, this is a challenging task due to the presence of three different anhydrous CaCO3 polymorphs having complex crystallization behavior. In this thesis, CaCO3 particles were synthesized at distinct environments to c...
Ultrafast Photoinduced Carrier Dynamics of Organic Semiconductors Measured by Time-Resolved Terahertz Spectroscopy
Esentürk, Okan; Lane, Paul A; Heilweil, Edwin J (null, 2010-01-01)
Intrinsic properties of organic semiconductors are investigated by Time-Resolved Terahertz Spectroscopy (TRTS) to assess their relative mobilities and efficiencies. Our results are well correlated with device measurements and show the effectiveness and advantages of using this non-contact optical technique to rapidly identify prospective materials. After a brief introduction of the TRTS technique, we summarize our results from relative mobility measurements of the organic semiconductor polymers poly(3-hexyl...
Improvement of biohydrogen production by genetic manipulations in rhodobacter sphaeroides O.U.001
Kars, Gökhan; Gündüz, Ufuk; Department of Biotechnology (2008)
Rhodobacter sphaeroides O.U.001 is a purple non-sulphur bacterium producing hydrogen under photoheterotrophic, nitrogen limited conditions. Hydrogen is produced by Mo-nitrogenase but substantial amount of H2 is reoxidized by a membrane bound uptake hydrogenase. In this study, hydrogen production and the expression of structural nitrogenase genes were investigated by varying molybdenum and iron ion concentrations. These two elements are found in the structure of Mo-nitrogenase and they are important for func...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Sengul, N. AYDOĞAN, and E. Büküşoğlu, “Nanoparticle adsorption induced configurations of nematic liquid crystal droplets,”
JOURNAL OF COLLOID AND INTERFACE SCIENCE
, vol. 608, pp. 2310–2320, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/96119.