Analyzes of Block Recombination and Lazy Interpolation Methods and Their Applications to Saber

2022-2-28
Aksoy, Berkin
Since the beginning of the National Institute of Standards and Technology (NIST), The Post-Quantum Cryptography (PQC) Standardization Process, efficient implementations of lattice-based algorithms have been studied extensively. Lattice-based NIST PQC finalists use polynomial or matrix-vector multiplications on the ring with type {Z}_{q}[x] / f(x). For convenient ring types, Number Theoretic Transform (NTT) can be used to perform multiplications as done in Crystals-KYBER among the finalists of the NIST PQC Standardization Process. On the other hand, if the q value of the scheme is a power of 2, as in NTRU and Saber, which are among the other lattice-based finalists, NTT can not be used explicitly. Hence multiplications are performed by the combination of Toom-Cook and Karatsuba algorithms. Recently, a novel technique called lazy interpolation has been introduced to increase the performance of Toom-Cook and Karatsuba algorithms. This thesis shows that the block recombination method is equivalent to lazy interpolation and can be used efficiently on multiplication algorithms. On the practical side, we compare different hybrid multiplication algorithms, then implement the block recombination method for Saber. Performance results are given in cycle values on general-purpose Intel processors with C implementation. Our work speeds up key generation, encapsulation, and decapsulation parts of Saber than the previous C implementations in the literature with a rate of between 10%-13%.

Suggestions

NEW EFFICIENT CHARACTERISTIC THREE POLYNOMIAL MULTIPLICATION ALGORITHMS AND THEIR APPLICATIONS TO NTRU PRIME
Yeniaras, Esra; Cenk, Murat; Department of Cryptography (2022-1-21)
Some of the post-quantum cryptographic protocols require polynomial multiplication in characteristic three fields, thus the efficiency of such multiplication algorithms gain more importance recently. In this thesis, we propose four new polynomial multiplication algorithms in characteristic three fields and we show that they are more efficient than the current state-of-the-art methods. We first analyze the well-known algorithms such as the schoolbook method, Karatsuba 2-way and 3-way split methods, Bernstein...
Mutual correlation of NIST statistical randomness tests and comparison of their sensitivities on transformed sequences
Doğanaksoy, Ali; Uğuz, Muhiddin; Akcengiz, Ziya (2017-01-01)
Random sequences are widely used in many cryptographic applications and hence their generation is one of the main research areas in cryptography. Statistical randomness tests are introduced to detect the weaknesses or nonrandom characteristics that a sequence under consideration may have. In the literature, there exist various statistical randomness tests and test suites, defined as a collection of tests. An efficient test suite should consist of a number of uncorrelated statistical tests each of which meas...
Related-key attacks on block ciphers
Darbuka, Aslı; Doğanaksoy, Ali; Department of Cryptography (2009)
One of the most important cryptographic primitives is the concept of block ciphers which yields confidentiality for data transmission in communication. Therefore, to be sure that confidentiality is provided, it is necessary to analyse the security of block ciphers by investigating their resistance to existing attacks. For this reason, related-key attacks gain much popularity in recent years and have been applied to many block ciphers with weak key schedules. In this work, our main motivation is to cover typ...
Basic cryptanalysis methods on block ciphers
Çelik, Dilek; Doğanaksoy, Ali; Department of Cryptography (2010)
Differential cryptanalysis and linear cryptanalysis are the first significant methods used to attack on block ciphers. These concepts compose the keystones for most of the attacks in recent years. Also, while designing a cipher, these attacks should be taken into consideration and the cipher should be created as secure against them. Although di fferential cryptanalysis and linear cryptanalysis are still important, they started to be ine cient due to the improvements in the technology. So, these attacks are ...
On statistical analysis of synchronous stream ciphers
Sönmez Turan, Meltem; Doğanaksoy, Ali; Department of Cryptography (2008)
Synchronous stream ciphers constitute an important class of symmetric ciphers. After the call of the eSTREAM project in 2004, 34 stream ciphers with different design approaches were proposed. In this thesis, we aim to provide a general framework to analyze stream ciphers statistically. Firstly, we consider stream ciphers as pseudo random number generators and study the quality of their output. We propose three randomness tests based on one dimensional random walks. Moreover, we theoretically and experimenta...
Citation Formats
B. Aksoy, “Analyzes of Block Recombination and Lazy Interpolation Methods and Their Applications to Saber,” M.S. - Master of Science, Middle East Technical University, 2022.