SYNTHESIS, CHARACTERIZATION AND CATALYTIC INVESTIGATION OF IRON BASED NANO-CATALYTS FOR WATER OXIDATION REACTION

2022-2-11
KOCABAŞ, SERRA
The search for new energy storage technologies drew attention to the production of hydrogen from clean, renewable sources such as water with increase of scarcity of fossil fuels. Hence, water splitting electrochemically has been the centre of attention in recent years. However, water oxidation (oxygen evolution) (OER) reaction requires high potential to achieve large energy barrier occurred while transferring four electrons and four protons. To overcome this energy barrier, catalyst with high stability and activity can be used. For this, the earth-abundant metal oxide nanoparticles with high surface area and large numbers of active sites have gained great attention in literature. This thesis study aims to synthesize chromium-iron based metal oxide nanoparticles and to characterize synthesized nanomaterials via Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), X-Ray Photoelectron Spectrometry (XPS), X-Ray Diffraction (XRD), X-Ray Energy Dispersive Spectroscopy (EDX) and Brunauer-Teller-Emmett Isotherm (BET) techniques. The microscopy results showed that CrFeO 3 nanowires were formed by assembly of ca. 14 nm nanocrystallites. Electrocatalytic investigation of vthe OER catalyst were studied in alkaline medium. To compare the activity of the nanocatalyst, benchmark RuO 2 used. CrFeO 3 -FTO nanowires presented promising electrocatalytic performance with an onset potential of 1.63 V vs RHE at where RuO 2 had an onset potential of 1.47 V vs RHE, overpotential of 737 mV at 10 mA cm -2 current density and Tafel slope of 57 mV dec -1 . As a result, CrFeO 3 nanomaterial was observed as comparable to that of RuO 2 and better than some iron-based metal oxide nanoparticles.

Suggestions

Synthesis and characterization of nickel zinc oxide nanoparticles and their investigation as water oxidation catalyst
Ağcalı, Rahime Yağmur; Nalbant Esentürk, Emren; Department of Chemistry (2020-10)
The depletion of fossil fuels has steered attention to discover new energy sources. Fossil fuels are not desirable to use because of their hazardous effects on earth and being non-renewable, yet they have been used as primary energy sources all over the world. Due to their limited amount, the focus of research has become maintaining renewable, green, and clean energy. In this sense, among others hydrogen has a great potential for being a primary source. The possible supplied energy from hydrogen is gr...
Synthesis of first row transition metal oxide nanomaterials for electrocatalytic water oxidation reaction
Çetin, Asude; Nalbant Esentürk, Emren; Department of Chemistry (2020)
Environmental concerns associated with the use of fossil fuels have elevated the demand for safe, clean and renewable energy sources. Hydrogen is an outstanding energy carrier because of the high amount of energy stored in its bond, and an excellent alternative to fossil fuels. Therefore, production of hydrogen from readily available and abundant sources such as water through electrochemical water splitting has gained increasing attention in the last couple of decades. However, water oxidation step of overa...
Preparation and characterization of metal oxide supported group 9B metal nanoparticles and their use as electrocatalysts in water splitting
Akbayrak, Merve; Önal, Ahmet Muhtar; Department of Chemistry (2022-9-2)
Hydrogen has been regarded as a crucial energy carrier due to its high energy density. Therefore, there is an increasing attention for the production of hydrogen. Among the hydrogen production methods, water splitting is one of the well-known environmentally friendly methods for the production of hydrogen. Although a large variety of catalysts have been tested in water splitting, the development of efficient and long-lived electrocatalysts is still an important issue. This thesis covers the preparation, cha...
Ethanol steam reforming with zirconia based catalysts
Arslan, Arzu; Doğu, Timur; Department of Chemical Engineering (2014)
Production of hydrogen, which has been considered as an environmentally clean ideal energy carrier, from abundant energy resources cleanly and renewably is essential to support sustainable energy development. Hydrogen production from bio-ethanol by steam reforming process is a promising approach, since bio-ethanol is the most available bio-fuel in the world and steam reforming of ethanol yields formation of 6 moles of hydrogen per mole of ethanol. Support material used for nickel based catalysts plays a cru...
Synthesis of bistriphenylamine and benzodithiophene based random conjugated polymers for organic photovoltaic applications
Çetin, Aslı; Çırpan, Ali; Department of Chemistry (2018)
Nowadays, traditional fossil fuels have become unable to compensate huge energy demand of the world due to the population increasing day by day and bringing about destructive greenhouse effect. Owing to all of these problems, renewable energy sources such as solar energy not only can be candidate for the solution of this expanded energy need but also can protect the earth by reducing the production of greenhouse gas. In this study, electronic, optical features and photovoltaic applications of two novel orga...
Citation Formats
S. KOCABAŞ, “SYNTHESIS, CHARACTERIZATION AND CATALYTIC INVESTIGATION OF IRON BASED NANO-CATALYTS FOR WATER OXIDATION REACTION,” M.S. - Master of Science, Middle East Technical University, 2022.